// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis, Klaus Mosthaf * * Copyright (C) 2009-2012 by Andreas Lauser * * Institute for Modelling Hydraulic and Environmental Systems * * University of Stuttgart, Germany * * email: .@iws.uni-stuttgart.de * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * * \brief Tutorial problem for a fully coupled twophase box model. */ #ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/ #define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/ // The numerical model #include // The DUNE grid used #include // Spatially dependent parameters // The components that are used #include #include #include // include material laws #include /*@\label{tutorial-coupled:rawLawInclude}@*/ #include #include namespace Dumux { // forward declaration of the problem class template class TutorialProblemCoupled; namespace Properties { // Create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dumux::TutorialProblemCoupled type;}; // Set grid and the grid creator to be used SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid); /*@\label{tutorial-coupled:set-grid}@*/ SET_TYPE_PROP(TutorialProblemCoupled, GridCreator, Dumux::CubeGridCreator); /*@\label{tutorial-coupled:set-gridcreator}@*/ // Set the wetting phase SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/ { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:wettingPhase}@*/ }; // Set the non-wetting phase SET_PROP(TutorialProblemCoupled, NonwettingPhase) { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef Dumux::LiquidPhase > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/ }; /*@\label{tutorial-coupled:2p-system-end}@*/ // Set the material law SET_PROP(TutorialProblemCoupled, MaterialLaw) { private: // material law typedefs typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; // select material law to be used typedef RegularizedBrooksCorey RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/ // adapter for absolute law typedef EffToAbsLaw TwoPMaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/ typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; enum { wPhaseIdx = FluidSystem::wPhaseIdx }; public: typedef TwoPAdapter type; }; // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ // define the properties required by the cube grid creator SET_SCALAR_PROP(TutorialProblemCoupled, GridSizeX, 300.0); SET_SCALAR_PROP(TutorialProblemCoupled, GridSizeY, 60.0); SET_SCALAR_PROP(TutorialProblemCoupled, GridSizeZ, 0.0); SET_INT_PROP(TutorialProblemCoupled, GridCellsX, 100); SET_INT_PROP(TutorialProblemCoupled, GridCellsY, 1); SET_INT_PROP(TutorialProblemCoupled, GridCellsZ, 0); } /*! * \ingroup TwoPBoxModel * * \brief Tutorial problem for a fully coupled twophase box model. */ template class TutorialProblemCoupled : public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial-coupled:def-problem}@*/ { typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; // Grid dimension enum { dim = GridView::dimension }; typedef Dune::FieldVector GlobalPosition; typedef Dune::FieldMatrix Tensor; // Dumux specific types typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, TwoPIndices) Indices; // get material law from property system typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; // determine type of the parameter objects depening on selected material law typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/ // indices of the conservation equations enum { contiWEqIdx = Indices::conti0EqIdx + FluidSystem::wPhaseIdx }; enum { contiNEqIdx = Indices::conti0EqIdx + FluidSystem::nPhaseIdx }; // indices of the primary variables enum { pwIdx = Indices::pwIdx }; enum { SnIdx = Indices::SnIdx }; public: TutorialProblemCoupled(TimeManager &timeManager) : ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView()) , eps_(3e-6) { //set main diagonal entries of the permeability tensor to a value //setting to one value means: isotropic, homogeneous K_ = 0; for (int i = 0; i < dim; i++) K_[i][i] = 1e-7; //set residual saturations materialParams_.setSwr(0.0); /*@\label{tutorial-coupled:setLawParams}@*/ materialParams_.setSnr(0.0); //parameters of Brooks & Corey Law materialParams_.setPe(500.0); materialParams_.setLambda(2); } //! Specifies the problem name. This is used as a prefix for files //! generated by the simulation. const char *name() const { return "tutorial_coupled"; } //! Returns true if a restart file should be written. bool shouldWriteRestartFile() const /*@\label{tutorial-coupled:restart}@*/ { return false; } //! Returns true if the current solution should be written to disk //! as a VTK file bool shouldWriteOutput() const /*@\label{tutorial-coupled:output}@*/ { return this->timeManager().timeStepIndex() > 0 && (this->timeManager().timeStepIndex() % 1 == 0); } //! Returns the temperature within a finite volume. We use constant //! 10 degrees Celsius. template Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const { return 283.15; }; /*! Intrinsic permeability tensor K \f$[m^2]\f$ depending * on the position in the domain * * \param context The execution context * \param scvIdx The local index of the degree of freedom * * Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ template const Tensor &intrinsicPermeability(const Context &context, /*@\label{tutorial-coupled:permeability}@*/ int spaceIdx, int timeIdx) const { return K_; } /*! Define the porosity \f$[-]\f$ of the porous medium depending * on the position in the domain * * \param context The execution context * \param scvIdx The local index of the degree of freedom * * Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ template Scalar porosity(const Context &context, /*@\label{tutorial-coupled:porosity}@*/ int spaceIdx, int timeIdx) const { return 0.2; } /*! Return the parameter object for the material law (i.e. Brooks-Corey) * depending on the position in the domain * * \param context The execution context * \param scvIdx The local index of the degree of freedom * * Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ template const MaterialLawParams& materialLawParams(const Context &context, /*@\label{tutorial-coupled:matLawParams}@*/ int spaceIdx, int timeIdx) const { return materialParams_; } template void boundaryTypes(BoundaryTypes &bcTypes, const Context &context, int spaceIdx, int timeIdx) const { const GlobalPosition &pos = context.pos(spaceIdx, timeIdx); if (pos[0] < eps_) // Dirichlet conditions on left boundary bcTypes.setAllDirichlet(); else // neuman for the remaining boundaries bcTypes.setAllNeumann(); } //! Evaluates the Dirichlet boundary conditions for a finite volume //! on the grid boundary. Here, the 'values' parameter stores //! primary variables. template void dirichlet(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 0.0; // 0 % oil saturation on left boundary } //! Evaluates the boundary conditions for a Neumann boundary //! segment. Here, the 'values' parameter stores the mass flux in //! [kg/(m^2 * s)] in normal direction of each phase. Negative template void neumann(RateVector &values, const Context &context, int spaceIdx, int timeIdx) const { const GlobalPosition &pos = context.pos(spaceIdx, timeIdx); Scalar right = this->bboxMax()[0]; // extraction of oil on the right boundary for approx. 1.e6 seconds if (pos[0] > right - eps_) { // oil outflux of 30 g/(m * s) on the right boundary. values[contiWEqIdx] = 0; values[contiNEqIdx] = 3e-2; } else { // no-flow on the remaining Neumann-boundaries. values[contiWEqIdx] = 0; values[contiNEqIdx] = 0; } } //! Evaluates the source term for all phases within a given //! sub-control-volume. In this case, the 'values' parameter //! stores the rate mass generated or annihilated per volume unit //! in [kg / (m^3 * s)]. Positive values mean that mass is created. template void source(RateVector &values, const Context &context, int spaceIdx, int timeIdx) const { values[contiWEqIdx] = 0.0; values[contiNEqIdx]= 0.0; } // Evaluates the initial value for a control volume. For this // method, the 'values' parameter stores primary variables. template void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const { values[pwIdx] = 200.0e3; // 200 kPa = 2 bar values[SnIdx] = 1.0; } private: Tensor K_; // Object that holds the values/parameters of the selected material law. MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/ // small epsilon value Scalar eps_; }; } #endif