/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #if HAVE_SUITESPARSE_UMFPACK_H #include #else #include #endif #include #include #include /* Equations for incompressible two-phase flow. Using s and p as variables: PV (s_i - s0_i) / dt + sum_{j \in U(i)} f(s_j) v_{ij} + sum_{j in D(i) f(s_i) v_{ij} = qw_i where v_{ij} = totmob_ij T_ij (p_i - p_j) Pressure equation: sum_{j \in N(i)} totmob_ij T_ij (p_i - p_j) = q_i */ template std::vector phaseMobility(const Opm::IncompPropertiesInterface& props, const std::vector& cells, const typename ADB::V& sw) { typedef Eigen::Array TwoCol; typedef Eigen::Array FourCol; typedef Eigen::SparseMatrix S; typedef typename ADB::V V; typedef typename ADB::M M; const int nc = props.numCells(); TwoCol s(nc, 2); s.leftCols<1>() = sw; s.rightCols<1>() = 1.0 - s.leftCols<1>(); TwoCol kr(nc, 2); FourCol dkr(nc, 4); props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data()); V krw = kr.leftCols<1>(); V kro = kr.rightCols<1>(); V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix. V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix. S krwjac(nc,nc); S krojac(nc,nc); auto sizes = Eigen::ArrayXi::Ones(nc); krwjac.reserve(sizes); krojac.reserve(sizes); for (int c = 0; c < nc; ++c) { krwjac.insert(c,c) = dkrw(c); krojac.insert(c,c) = dkro(c); } const double* mu = props.viscosity(); std::vector dmw = { M(krwjac)/mu[0] }; std::vector dmo = { M(krojac)/mu[1] }; std::vector pmobc = { ADB::function(krw / mu[0], std::move(dmw)) , ADB::function(kro / mu[1], std::move(dmo)) }; return pmobc; } /// Returns fw(sw). template ADB fluxFunc(const std::vector& m) { assert (m.size() == 2); ADB f = m[0] / (m[0] + m[1]); return f; } int main() try { typedef Opm::AutoDiffBlock ADB; typedef ADB::V V; typedef Eigen::SparseMatrix S; Opm::time::StopWatch clock; clock.start(); const Opm::GridManager gm(3,3);//(50, 50, 10); const UnstructuredGrid& grid = *gm.c_grid(); using namespace Opm::unit; using namespace Opm::prefix; // const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear, // { 1000.0, 800.0 }, // { 1.0*centi*Poise, 5.0*centi*Poise }, // 0.2, 100*milli*darcy, // grid.dimensions, grid.number_of_cells); // const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear, // { 1000.0, 1000.0 }, // { 1.0, 1.0 }, // 1.0, 1.0, // grid.dimensions, grid.number_of_cells); const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear, { 1000.0, 1000.0 }, { 1.0, 30.0 }, 1.0, 1.0, grid.dimensions, grid.number_of_cells); V htrans(grid.cell_facepos[grid.number_of_cells]); tpfa_htrans_compute(const_cast(&grid), props.permeability(), htrans.data()); V trans_all(grid.number_of_faces); // tpfa_trans_compute(const_cast(&grid), htrans.data(), trans_all.data()); const int nc = grid.number_of_cells; std::vector allcells(nc); for (int i = 0; i < nc; ++i) { allcells[i] = i; } std::cerr << "Opm core " << clock.secsSinceLast() << std::endl; // Define neighbourhood-derived operator matrices. const Opm::HelperOps ops(grid); const int num_internal = ops.internal_faces.size(); std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl; typedef Opm::AutoDiffBlock ADB; typedef ADB::V V; // q V q(nc); q.setZero(); q[0] = 1.0; q[nc-1] = -1.0; // s0 - this is explicit now typedef Eigen::Array TwoCol; TwoCol s0(nc, 2); s0.leftCols<1>().setZero(); s0.rightCols<1>().setOnes(); // totmob - explicit as well TwoCol kr(nc, 2); props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0); const V krw = kr.leftCols<1>(); const V kro = kr.rightCols<1>(); const double* mu = props.viscosity(); const V totmob = krw/mu[0] + kro/mu[1]; // Moved down here because we need total mobility. tpfa_eff_trans_compute(const_cast(&grid), totmob.data(), htrans.data(), trans_all.data()); // Still explicit, and no upwinding! V mobtransf(num_internal); for (int fi = 0; fi < num_internal; ++fi) { mobtransf[fi] = trans_all[ops.internal_faces[fi]]; } std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl; // Initial pressure. V p0(nc,1); p0.fill(200*Opm::unit::barsa); // First actual AD usage: defining pressure variable. const std::vector bpat = { nc }; // Could actually write { nc } instead of bpat below, // but we prefer a named variable since we will repeat it. const ADB p = ADB::variable(0, p0, bpat); const ADB ngradp = ops.ngrad*p; // We want flux = totmob*trans*(p_i - p_j) for the ij-face. const ADB flux = mobtransf*ngradp; const ADB residual = ops.div*flux - q; std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl; // It's the residual we want to be zero. We know it's linear in p, // so we just need a single linear solve. Since we have formulated // ourselves with a residual and jacobian we do this with a single // Newton step (hopefully easy to extend later): // p = p0 - J(p0) \ R(p0) // Where R(p0) and J(p0) are contained in residual.value() and // residual.derived()[0]. #if HAVE_SUITESPARSE_UMFPACK_H typedef Eigen::UmfPackLU LinSolver; #else typedef Eigen::BiCGSTAB LinSolver; #endif // HAVE_SUITESPARSE_UMFPACK_H LinSolver solver; S pmatr; residual.derivative()[0].toSparse(pmatr); pmatr.coeffRef(0,0) *= 2.0; pmatr.makeCompressed(); solver.compute(pmatr); if (solver.info() != Eigen::Success) { std::cerr << "Pressure/flow Jacobian decomposition error\n"; return EXIT_FAILURE; } // const Eigen::VectorXd dp = solver.solve(residual.value().matrix()); ADB::V residual_v = residual.value(); const V dp = solver.solve(residual_v.matrix()).array(); if (solver.info() != Eigen::Success) { std::cerr << "Pressure/flow solve failure\n"; return EXIT_FAILURE; } const V p1 = p0 - dp; std::cerr << "Solve " << clock.secsSinceLast() << std::endl; // std::cout << p1 << std::endl; // ------ Transport solve ------ // Now we'll try to do a transport step as well. // Residual formula is // R_w = s_w - s_w^0 + dt/pv * (div v_w) // where // v_w = f_w v // and f_w is (for now) based on averaged mobilities, not upwind. double res_norm = 1e100; const V sw0 = s0.leftCols<1>(); // V sw1 = sw0; V sw1 = 0.5*V::Ones(nc,1); const V ndp = (ops.ngrad * p1.matrix()).array(); const V dflux = mobtransf * ndp; const Opm::UpwindSelector upwind(grid, ops, dflux); const V pv = Eigen::Map(props.porosity(), nc, 1) * Eigen::Map(grid.cell_volumes, nc, 1); const double dt = 0.0005; const V dtpv = dt/pv; const V qneg = q.min(V::Zero(nc,1)); const V qpos = q.max(V::Zero(nc,1)); std::cout.setf(std::ios::scientific); std::cout.precision(16); int it = 0; do { const ADB sw = ADB::variable(0, sw1, bpat); const std::vector pmobc = phaseMobility(props, allcells, sw.value()); const std::vector pmobf = upwind.select(pmobc); const ADB fw_cell = fluxFunc(pmobc); const ADB fw_face = fluxFunc(pmobf); const ADB flux1 = fw_face * dflux; const ADB qtr_ad = qpos + fw_cell*qneg; const ADB transport_residual = sw - sw0 + dtpv*(ops.div*flux1 - qtr_ad); res_norm = transport_residual.value().matrix().norm(); std::cout << "res_norm[" << it << "] = " << res_norm << std::endl; S smatr; transport_residual.derivative()[0].toSparse(smatr); smatr.makeCompressed(); solver.compute(smatr); if (solver.info() != Eigen::Success) { std::cerr << "Transport Jacobian decomposition error\n"; return EXIT_FAILURE; } ADB::V transport_residual_v = transport_residual.value(); const V ds = solver.solve(transport_residual_v.matrix()).array(); if (solver.info() != Eigen::Success) { std::cerr << "Transport solve failure\n"; return EXIT_FAILURE; } sw1 = sw.value() - ds; std::cerr << "Solve for s[" << it << "]: " << clock.secsSinceLast() << '\n'; sw1 = sw1.min(V::Ones(nc,1)).max(V::Zero(nc,1)); it += 1; } while (res_norm > 1e-7); std::cout << "Saturation solution:\n" << "function s1 = solution\n" << "s1 = [\n" << sw1 << "\n];\n"; } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }