/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template MultisegmentWellEval:: MultisegmentWellEval(WellInterfaceIndices& baseif) : MultisegmentWellGeneric(baseif) , baseif_(baseif) , linSys_(*this) , primary_variables_(baseif) , segments_(this->numberOfSegments(), baseif) , cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0) , cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0) { } template void MultisegmentWellEval:: initMatrixAndVectors(const int num_cells) { linSys_.init(num_cells, baseif_.numPerfs(), baseif_.cells(), segments_.inlets(), segments_.perforations()); primary_variables_.resize(this->numberOfSegments()); } template ConvergenceReport MultisegmentWellEval:: getWellConvergence(const WellState& well_state, const std::vector& B_avg, DeferredLogger& deferred_logger, const double max_residual_allowed, const double tolerance_wells, const double relaxed_inner_tolerance_flow_ms_well, const double tolerance_pressure_ms_wells, const double relaxed_inner_tolerance_pressure_ms_well, const bool relax_tolerance) const { assert(int(B_avg.size()) == baseif_.numComponents()); // checking if any residual is NaN or too large. The two large one is only handled for the well flux std::vector> abs_residual(this->numberOfSegments(), std::vector(numWellEq, 0.0)); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]); } } std::vector maximum_residual(numWellEq, 0.0); ConvergenceReport report; // TODO: the following is a little complicated, maybe can be simplified in some way? for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { for (int seg = 0; seg < this->numberOfSegments(); ++seg) { if (eq_idx < baseif_.numComponents()) { // phase or component mass equations const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx]; if (flux_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = flux_residual; } } else { // pressure or control equation // for the top segment (seg == 0), it is control equation, will be checked later separately if (seg > 0) { // Pressure equation const double pressure_residual = abs_residual[seg][eq_idx]; if (pressure_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = pressure_residual; } } } } } using CR = ConvergenceReport; for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { if (eq_idx < baseif_.numComponents()) { // phase or component mass equations const double flux_residual = maximum_residual[eq_idx]; // TODO: the report can not handle the segment number yet. if (std::isnan(flux_residual)) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()}); } else if (flux_residual > max_residual_allowed) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()}); } else if (!relax_tolerance && flux_residual > tolerance_wells) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()}); } else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()}); } } else { // pressure equation const double pressure_residual = maximum_residual[eq_idx]; const int dummy_component = -1; if (std::isnan(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (std::isinf(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()}); } else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()}); } } } WellConvergence(baseif_). checkConvergenceControlEq(well_state, {tolerance_pressure_ms_wells, tolerance_pressure_ms_wells, tolerance_wells, tolerance_wells, max_residual_allowed}, std::abs(linSys_.residual()[0][SPres]), report, deferred_logger); // for stopped well, we do not enforce the following checking to avoid dealing with sign of near-zero values // for BHP or THP controlled wells, we need to make sure the flow direction is correct if (!baseif_.wellIsStopped() && baseif_.isPressureControlled(well_state)) { // checking the flow direction const double sign = baseif_.isProducer() ? -1. : 1.; const auto weight_total_flux = this->primary_variables_.getWQTotal() * sign; constexpr int dummy_phase = -1; if (weight_total_flux < 0.) { report.setWellFailed( {CR::WellFailure::Type::WrongFlowDirection, CR::Severity::Normal, dummy_phase, baseif_.name()}); } } return report; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) { out.setDerivative(eq_idx, in.derivative(eq_idx)); } return out; } template void MultisegmentWellEval:: handleAccelerationPressureLoss(const int seg, WellState& well_state) { const EvalWell accelerationPressureLoss = segments_.accelerationPressureLoss(seg); auto& segments = well_state.well(baseif_.indexOfWell()).segments; segments.pressure_drop_accel[seg] = accelerationPressureLoss.value(); MultisegmentWellAssemble(baseif_). assemblePressureLoss(seg, segments_.upwinding_segment(seg), accelerationPressureLoss, linSys_); } template void MultisegmentWellEval:: assembleDefaultPressureEq(const int seg, WellState& well_state, const bool use_average_density) { assert(seg != 0); // not top segment const int seg_upwind = segments_.upwinding_segment(seg); const bool reverseFlow = seg != seg_upwind; // special treatment for reverse flow // for top segment, the well control equation will be used. EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg); EvalWell extra_derivatives; // we need to handle the pressure difference between the two segments // hydrostatic pressure loss is assembled seperately at the end // TODO: we might be able to add member variables to store these values, then we update well state // after converged auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; if (this->frictionalPressureLossConsidered()) { const auto friction_pressure_drop = segments_.getFrictionPressureLoss(seg, false); if (reverseFlow){ // call function once again to obtain/assemble remaining derivatives extra_derivatives = -segments_.getFrictionPressureLoss(seg, true); MultisegmentWellAssemble(baseif_). assemblePressureEqExtraDerivatives(seg, seg_upwind, extra_derivatives, linSys_); } pressure_equation -= friction_pressure_drop; segments.pressure_drop_friction[seg] = friction_pressure_drop.value(); } // contribution from the outlet segment const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index); MultisegmentWellAssemble(baseif_). assemblePressureEq(seg, seg_upwind, outlet_segment_index, pressure_equation, outlet_pressure, linSys_); if (this->accelerationalPressureLossConsidered()) { handleAccelerationPressureLoss(seg, well_state); } // Since density derivatives are organized differently than what is required for assemblePressureEq, // this part needs to be assembled separately. Optionally use average density variant. const auto hydro_pressure_drop_seg = segments_.getHydroPressureLoss(seg, seg); if (!use_average_density){ MultisegmentWellAssemble(baseif_). assembleHydroPressureLoss(seg, seg, hydro_pressure_drop_seg, linSys_); segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop_seg.value(); } else { const int seg_outlet = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const auto hydro_pressure_drop_outlet = segments_.getHydroPressureLoss(seg, seg_outlet); MultisegmentWellAssemble(baseif_). assembleHydroPressureLoss(seg, seg, 0.5*hydro_pressure_drop_seg, linSys_); MultisegmentWellAssemble(baseif_). assembleHydroPressureLoss(seg, seg_outlet, 0.5*hydro_pressure_drop_outlet, linSys_); segments.pressure_drop_hydrostatic[seg] = 0.5*hydro_pressure_drop_seg.value() + 0.5*hydro_pressure_drop_outlet.value(); } } template void MultisegmentWellEval:: assembleICDPressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) { // TODO: upwinding needs to be taken care of // top segment can not be a spiral ICD device assert(seg != 0); if (const auto& segment = this->segmentSet()[seg]; (segment.segmentType() == Segment::SegmentType::VALVE) && (segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve MultisegmentWellAssemble(baseif_). assembleTrivialEq(seg, this->primary_variables_.eval(seg)[WQTotal].value(), linSys_); auto& ws = well_state.well(baseif_.indexOfWell()); ws.segments.pressure_drop_friction[seg] = 0.; return; } // the pressure equation is something like // p_seg - deltaP - p_outlet = 0. // the major part is how to calculate the deltaP EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg); EvalWell icd_pressure_drop; switch(this->segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : icd_pressure_drop = segments_.pressureDropSpiralICD(seg); break; case Segment::SegmentType::AICD : icd_pressure_drop = segments_.pressureDropAutoICD(seg, unit_system); break; case Segment::SegmentType::VALVE : icd_pressure_drop = segments_.pressureDropValve(seg); break; default: { OPM_DEFLOG_THROW(std::runtime_error, fmt::format("Segment {} for well {} is not of ICD type", this->segmentSet()[seg].segmentNumber(), baseif_.name()), deferred_logger); } } pressure_equation = pressure_equation - icd_pressure_drop; auto& ws = well_state.well(baseif_.indexOfWell()); ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value(); // contribution from the outlet segment const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index); const int seg_upwind = segments_.upwinding_segment(seg); MultisegmentWellAssemble(baseif_). assemblePressureEq(seg, seg_upwind, outlet_segment_index, pressure_equation, outlet_pressure, linSys_, FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx), FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); } template void MultisegmentWellEval:: assemblePressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, const bool use_average_density, DeferredLogger& deferred_logger) { switch(this->segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : case Segment::SegmentType::AICD : case Segment::SegmentType::VALVE : { assembleICDPressureEq(seg, unit_system, well_state,deferred_logger); break; } default : assembleDefaultPressureEq(seg, well_state, use_average_density); } } template std::pair > MultisegmentWellEval:: getFiniteWellResiduals(const std::vector& B_avg, DeferredLogger& deferred_logger) const { assert(int(B_avg.size() ) == baseif_.numComponents()); std::vector residuals(numWellEq + 1, 0.0); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { double residual = 0.; if (eq_idx < baseif_.numComponents()) { residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx]; } else { if (seg > 0) { residual = std::abs(linSys_.residual()[seg][eq_idx]); } } if (std::isnan(residual) || std::isinf(residual)) { deferred_logger.debug(fmt::format("nan or inf value for residual for well {} segment {} eq_idx {}", baseif_.name(), seg, eq_idx)); return {false, residuals}; } if (residual > residuals[eq_idx]) { residuals[eq_idx] = residual; } } } // handling the control equation residual { const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]); if (std::isnan(control_residual) || std::isinf(control_residual)) { deferred_logger.debug(fmt::format("nan or inf value for control residual for well {}", baseif_.name())); return {false, residuals}; } residuals[numWellEq] = control_residual; } return {true, residuals}; } template double MultisegmentWellEval:: getControlTolerance(const WellState& well_state, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const { double control_tolerance = 0.; const int well_index = baseif_.indexOfWell(); const auto& ws = well_state.well(well_index); if (baseif_.isInjector() ) { auto current = ws.injection_cmode; switch(current) { case Well::InjectorCMode::THP: control_tolerance = tolerance_pressure_ms_wells; break; case Well::InjectorCMode::BHP: control_tolerance = tolerance_wells; break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: control_tolerance = tolerance_wells; break; case Well::InjectorCMode::GRUP: control_tolerance = tolerance_wells; break; default: OPM_DEFLOG_THROW(std::runtime_error, fmt::format("Unknown well control control types for well {}", baseif_.name()), deferred_logger); } } if (baseif_.isProducer() ) { auto current = ws.production_cmode; switch(current) { case Well::ProducerCMode::THP: control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar break; case Well::ProducerCMode::BHP: control_tolerance = tolerance_wells; // 0.01 bar break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: control_tolerance = tolerance_wells; // smaller tolerance for rate control break; case Well::ProducerCMode::GRUP: control_tolerance = tolerance_wells; // smaller tolerance for rate control break; default: OPM_DEFLOG_THROW(std::runtime_error, fmt::format("Unknown well control control types for well {}", baseif_.name()), deferred_logger); } } return control_tolerance; } template double MultisegmentWellEval:: getResidualMeasureValue(const WellState& well_state, const std::vector& residuals, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const { assert(int(residuals.size()) == numWellEq + 1); const double rate_tolerance = tolerance_wells; int count = 0; double sum = 0; for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) { if (residuals[eq_idx] > rate_tolerance) { sum += residuals[eq_idx] / rate_tolerance; ++count; } } const double pressure_tolerance = tolerance_pressure_ms_wells; if (residuals[SPres] > pressure_tolerance) { sum += residuals[SPres] / pressure_tolerance; ++count; } const double control_tolerance = getControlTolerance(well_state, tolerance_wells, tolerance_pressure_ms_wells, deferred_logger); if (residuals[SPres + 1] > control_tolerance) { sum += residuals[SPres + 1] / control_tolerance; ++count; } // if (count == 0), it should be converged. assert(count != 0); return sum; } #define INSTANCE(...) \ template class MultisegmentWellEval,__VA_ARGS__,double>; // One phase INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>) // Two phase INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>) // Blackoil INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>) INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>) } // namespace Opm