/* Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILSOLVENTMODEL_HEADER_INCLUDED #define OPM_BLACKOILSOLVENTMODEL_HEADER_INCLUDED #include #include #include #include #include namespace Opm { /// A model implementation for three-phase black oil /// with one extra component. /// /// /// It uses automatic differentiation via the class AutoDiffBlock /// to simplify assembly of the jacobian matrix. template class BlackoilSolventModel : public BlackoilModelBase > { public: // --------- Types and enums --------- typedef BlackoilModelBase > Base; typedef typename Base::ReservoirState ReservoirState; typedef typename Base::WellState WellState; // The next line requires C++11 support available in g++ 4.7. // friend Base; friend class BlackoilModelBase >; /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] fluid fluid properties /// \param[in] geo rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] solvent_props solvent properties /// \param[in] wells well structure /// \param[in] linsolver linear solver /// \param[in] has_disgas turn on dissolved gas /// \param[in] has_vapoil turn on vaporized oil feature /// \param[in] terminal_output request output to cout/cerr /// \param[in] has_solvent turn on solvent feature BlackoilSolventModel(const typename Base::ModelParameters& param, const Grid& grid, const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo, const RockCompressibility* rock_comp_props, const SolventPropsAdFromDeck& solvent_props, const Wells* wells, const NewtonIterationBlackoilInterface& linsolver, const EclipseStateConstPtr eclState, const bool has_disgas, const bool has_vapoil, const bool terminal_output, const bool has_solvent); /// Apply an update to the primary variables, chopped if appropriate. /// \param[in] dx updates to apply to primary variables /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void updateState(const V& dx, ReservoirState& reservoir_state, WellState& well_state); /// Compute convergence based on total mass balance (tol_mb) and maximum /// residual mass balance (tol_cnv). /// \param[in] dt timestep length /// \param[in] iteration current iteration number bool getConvergence(const double dt, const int iteration); /// Assemble the residual and Jacobian of the nonlinear system. /// \param[in] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables /// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep void assemble(const ReservoirState& reservoir_state, WellState& well_state, const bool initial_assembly); protected: // --------- Types and enums --------- typedef typename Base::SolutionState SolutionState; typedef typename Base::DataBlock DataBlock; enum { Solvent = CanonicalVariablePositions::Next }; // --------- Data members --------- const bool has_solvent_; const int solvent_pos_; const SolventPropsAdFromDeck& solvent_props_; // Need to declare Base members we want to use here. using Base::grid_; using Base::fluid_; using Base::geo_; using Base::rock_comp_props_; using Base::wells_; using Base::linsolver_; using Base::active_; using Base::canph_; using Base::cells_; using Base::ops_; using Base::wops_; using Base::has_disgas_; using Base::has_vapoil_; using Base::param_; using Base::use_threshold_pressure_; using Base::threshold_pressures_by_interior_face_; using Base::rq_; using Base::phaseCondition_; using Base::well_perforation_pressure_diffs_; using Base::residual_; using Base::terminal_output_; using Base::primalVariable_; using Base::pvdt_; // --------- Protected methods --------- // Need to declare Base members we want to use here. using Base::wellsActive; using Base::wells; using Base::variableState; using Base::computePressures; using Base::computeGasPressure; using Base::applyThresholdPressures; using Base::fluidViscosity; using Base::fluidReciprocFVF; using Base::fluidDensity; using Base::fluidRsSat; using Base::fluidRvSat; using Base::poroMult; using Base::transMult; using Base::updatePrimalVariableFromState; using Base::updatePhaseCondFromPrimalVariable; using Base::dpMaxRel; using Base::dsMax; using Base::drMaxRel; using Base::maxResidualAllowed; using Base::updateWellControls; using Base::computeWellConnectionPressures; using Base::addWellControlEq; std::vector computeRelPerm(const SolutionState& state) const; void makeConstantState(SolutionState& state) const; std::vector variableStateInitials(const ReservoirState& x, const WellState& xw) const; std::vector variableStateIndices() const; SolutionState variableStateExtractVars(const ReservoirState& x, const std::vector& indices, std::vector& vars) const; void computeAccum(const SolutionState& state, const int aix ); void assembleMassBalanceEq(const SolutionState& state); void addWellContributionToMassBalanceEq(const std::vector& cq_s, const SolutionState& state, WellState& xw); void computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& p , const SolutionState& state ); const std::vector phaseCondition() const {return this->phaseCondition_;} /// \brief Compute the reduction within the convergence check. /// \param[in] B A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. B.col(i) contains the values /// for phase i. /// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. tempV.col(i) contains the /// values /// for phase i. /// \param[in] R A matrix with MaxNumPhases columns and the same number rows /// as the number of cells of the grid. B.col(i) contains the values /// for phase i. /// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum /// of R for the phase i. /// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the /// maximum of tempV for the phase i. /// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average /// of B for the phase i. /// \param[in] nc The number of cells of the local grid. /// \return The total pore volume over all cells. double convergenceReduction(const Eigen::Array& B, const Eigen::Array& tempV, const Eigen::Array& R, std::array& R_sum, std::array& maxCoeff, std::array& B_avg, std::vector& maxNormWell, int nc, int nw) const; }; /// Need to include concentration in our state variables, otherwise all is as /// the default blackoil model. struct BlackoilSolventSolutionState : public DefaultBlackoilSolutionState { explicit BlackoilSolventSolutionState(const int np) : DefaultBlackoilSolutionState(np), solvent_saturation( ADB::null()) { } ADB solvent_saturation; }; /// Providing types by template specialisation of ModelTraits for BlackoilSolventModel. template struct ModelTraits< BlackoilSolventModel > { typedef BlackoilSolventState ReservoirState; typedef WellStateFullyImplicitBlackoilSolvent WellState; typedef BlackoilModelParameters ModelParameters; typedef BlackoilSolventSolutionState SolutionState; }; } // namespace Opm #include "BlackoilSolventModel_impl.hpp" #endif // OPM_BLACKOILSOLVENTMODEL_HEADER_INCLUDED