/*
Copyright 2016 IRIS AS
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
#define OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_CUDA
#include
#endif
BEGIN_PROPERTIES
NEW_TYPE_TAG(FlowIstlSolver, INHERITS_FROM(FlowIstlSolverParams));
template
struct EclWellModel;
//! Set the type of a global jacobian matrix for linear solvers that are based on
//! dune-istl.
SET_PROP(FlowIstlSolver, SparseMatrixAdapter)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
typedef Opm::MatrixBlock Block;
public:
typedef typename Opm::Linear::IstlSparseMatrixAdapter type;
};
END_PROPERTIES
namespace Opm
{
template
DenseMatrix transposeDenseMatrix(const DenseMatrix& M)
{
DenseMatrix tmp;
for (int i = 0; i < M.rows; ++i)
for (int j = 0; j < M.cols; ++j)
tmp[j][i] = M[i][j];
return tmp;
}
//=====================================================================
// Implementation for ISTL-matrix based operator
//=====================================================================
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface
*/
template
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator
{
typedef Dune::AssembledLinearOperator BaseType;
public:
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication communication_type;
#else
typedef Dune::CollectiveCommunication< int > communication_type;
#endif
Dune::SolverCategory::Category category() const override
{
return overlapping ?
Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential;
}
//! constructor: just store a reference to a matrix
WellModelMatrixAdapter (const M& A,
const WellModel& wellMod,
const std::shared_ptr< communication_type >& comm = std::shared_ptr< communication_type >())
: A_( A ), wellMod_( wellMod ), comm_(comm)
{}
virtual void apply( const X& x, Y& y ) const override
{
A_.mv( x, y );
// add well model modification to y
wellMod_.apply(x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
// y += \alpha * A * x
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const override
{
A_.usmv(alpha,x,y);
// add scaled well model modification to y
wellMod_.applyScaleAdd( alpha, x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
virtual const matrix_type& getmat() const override { return A_; }
protected:
const matrix_type& A_ ;
const WellModel& wellMod_;
std::shared_ptr< communication_type > comm_;
};
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface.
We assume parallel ordering, where ghost rows are located after interior rows
*/
template
class WellModelGhostLastMatrixAdapter : public Dune::AssembledLinearOperator
{
typedef Dune::AssembledLinearOperator BaseType;
public:
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication communication_type;
#else
typedef Dune::CollectiveCommunication< int > communication_type;
#endif
Dune::SolverCategory::Category category() const override
{
return overlapping ?
Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential;
}
//! constructor: just store a reference to a matrix
WellModelGhostLastMatrixAdapter (const M& A,
const WellModel& wellMod,
const size_t interiorSize )
: A_( A ), wellMod_( wellMod ), interiorSize_(interiorSize)
{}
virtual void apply( const X& x, Y& y ) const override
{
for (auto row = A_.begin(); row.index() < interiorSize_; ++row)
{
y[row.index()]=0;
auto endc = (*row).end();
for (auto col = (*row).begin(); col != endc; ++col)
(*col).umv(x[col.index()], y[row.index()]);
}
// add well model modification to y
wellMod_.apply(x, y );
ghostLastProject( y );
}
// y += \alpha * A * x
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const override
{
for (auto row = A_.begin(); row.index() < interiorSize_; ++row)
{
auto endc = (*row).end();
for (auto col = (*row).begin(); col != endc; ++col)
(*col).usmv(alpha, x[col.index()], y[row.index()]);
}
// add scaled well model modification to y
wellMod_.applyScaleAdd( alpha, x, y );
ghostLastProject( y );
}
virtual const matrix_type& getmat() const override { return A_; }
protected:
void ghostLastProject(Y& y) const
{
size_t end = y.size();
for (size_t i = interiorSize_; i < end; ++i)
y[i] = 0;
}
const matrix_type& A_ ;
const WellModel& wellMod_;
size_t interiorSize_;
};
/// This class solves the fully implicit black-oil system by
/// solving the reduced system (after eliminating well variables)
/// as a block-structured matrix (one block for all cell variables) for a fixed
/// number of cell variables np .
template
class ISTLSolverEbos
{
protected:
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter;
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) Vector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, EclWellModel) WellModel;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename SparseMatrixAdapter::IstlMatrix Matrix;
typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlockType;
typedef typename Vector::block_type BlockVector;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ThreadManager) ThreadManager;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
using FlexibleSolverType = Dune::FlexibleSolver;
// Due to miscibility oil <-> gas the water eqn is the one we can replace with a pressure equation.
static const bool waterEnabled = Indices::waterEnabled;
static const int pindex = (waterEnabled) ? BlackOilDefaultIndexTraits::waterCompIdx : BlackOilDefaultIndexTraits::oilCompIdx;
enum { pressureEqnIndex = pindex };
enum { pressureVarIndex = Indices::pressureSwitchIdx };
static const int numEq = Indices::numEq;
#if HAVE_CUDA
std::unique_ptr bdaBridge;
#endif
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication communication_type;
#else
typedef Dune::CollectiveCommunication< int > communication_type;
#endif
public:
typedef Dune::AssembledLinearOperator< Matrix, Vector, Vector > AssembledLinearOperatorType;
static void registerParameters()
{
FlowLinearSolverParameters::registerParameters();
}
/// Construct a system solver.
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
ISTLSolverEbos(const Simulator& simulator)
: simulator_(simulator),
iterations_( 0 ),
converged_(false),
matrix_()
{
#if HAVE_MPI
comm_.reset( new communication_type( simulator_.vanguard().grid().comm() ) );
#endif
parameters_.template init();
useFlexible_ = parameters_.use_cpr_ || EWOMS_PARAM_IS_SET(TypeTag, std::string, LinearSolverConfiguration);
if (useFlexible_)
{
prm_ = setupPropertyTree(parameters_);
}
const auto& gridForConn = simulator_.vanguard().grid();
#if HAVE_CUDA
bool use_gpu = EWOMS_GET_PARAM(TypeTag, bool, UseGpu);
if (gridForConn.comm().size() > 1 && use_gpu) {
OpmLog::warning("Warning cannot use GPU with MPI, GPU is disabled");
use_gpu = false;
}
const int maxit = EWOMS_GET_PARAM(TypeTag, int, LinearSolverMaxIter);
const double tolerance = EWOMS_GET_PARAM(TypeTag, double, LinearSolverReduction);
const int linear_solver_verbosity = parameters_.linear_solver_verbosity_;
bdaBridge.reset(new BdaBridge(use_gpu, linear_solver_verbosity, maxit, tolerance));
#else
const bool use_gpu = EWOMS_GET_PARAM(TypeTag, bool, UseGpu);
if (use_gpu) {
OPM_THROW(std::logic_error,"Error cannot use GPU solver since CUDA was not found during compilation");
}
#endif
extractParallelGridInformationToISTL(simulator_.vanguard().grid(), parallelInformation_);
useWellConn_ = EWOMS_GET_PARAM(TypeTag, bool, MatrixAddWellContributions);
if (!useWellConn_ && useFlexible_)
{
OPM_THROW(std::logic_error, "Flexible solvers and CPR need the well contribution in the matrix. Please run with"
" --matrix-add-well-contributions=true");
}
ownersFirst_ = EWOMS_GET_PARAM(TypeTag, bool, OwnerCellsFirst);
interiorCellNum_ = detail::numMatrixRowsToUseInSolver(simulator_.vanguard().grid(), ownersFirst_);
if ( isParallel() && (!ownersFirst_ || parameters_.linear_solver_use_amg_ || useFlexible_ ) ) {
detail::setWellConnections(gridForConn, simulator_.vanguard().schedule().getWellsatEnd(), useWellConn_, wellConnectionsGraph_);
// For some reason simulator_.model().elementMapper() is not initialized at this stage
// Hence const auto& elemMapper = simulator_.model().elementMapper(); does not work.
// Set it up manually
using ElementMapper =
Dune::MultipleCodimMultipleGeomTypeMapper;
ElementMapper elemMapper(simulator_.vanguard().gridView(), Dune::mcmgElementLayout());
detail::findOverlapAndInterior(gridForConn, elemMapper, overlapRows_, interiorRows_);
noGhostAdjacency();
setGhostsInNoGhost(*noGhostMat_);
if (ownersFirst_)
OpmLog::warning("OwnerCellsFirst option is true, but ignored.");
}
if (useFlexible_)
{
// Print parameters to PRT/DBG logs.
if (simulator.gridView().comm().rank() == 0) {
std::ostringstream os;
os << "Property tree for linear solver:\n";
boost::property_tree::write_json(os, prm_, true);
OpmLog::note(os.str());
}
}
}
// nothing to clean here
void eraseMatrix() {
}
void prepare(const SparseMatrixAdapter& M, Vector& b)
{
static bool firstcall = true;
#if HAVE_MPI
if (firstcall && parallelInformation_.type() == typeid(ParallelISTLInformation)) {
// Parallel case.
const ParallelISTLInformation* parinfo = std::any_cast(¶llelInformation_);
assert(parinfo);
const size_t size = M.istlMatrix().N();
parinfo->copyValuesTo(comm_->indexSet(), comm_->remoteIndices(), size, 1);
}
#endif
// update matrix entries for solvers.
if (noGhostMat_)
{
copyJacToNoGhost(M.istlMatrix(), *noGhostMat_);
}
else
{
if (firstcall)
{
// ebos will not change the matrix object. Hence simply store a pointer
// to the original one with a deleter that does nothing.
// Outch! We need to be able to scale the linear system! Hence const_cast
matrix_ = const_cast(&M.istlMatrix());
}
else
{
// Pointers should not change
if ( &(M.istlMatrix()) != matrix_ )
{
OPM_THROW(std::logic_error, "Matrix objects are expected to be reused when reassembling!"
<<" old pointer was " << matrix_ << ", new one is " << (&M.istlMatrix()) );
}
}
}
rhs_ = &b;
if (useFlexible_)
{
prepareFlexibleSolver();
}
else
{
this->scaleSystem();
}
firstcall = false;
}
void scaleSystem()
{
if (useWellConn_) {
bool form_cpr = true;
if (parameters_.system_strategy_ == "quasiimpes") {
weights_ = getQuasiImpesWeights();
} else if (parameters_.system_strategy_ == "trueimpes") {
weights_ = getStorageWeights();
} else if (parameters_.system_strategy_ == "simple") {
BlockVector bvec(1.0);
weights_ = getSimpleWeights(bvec);
} else if (parameters_.system_strategy_ == "original") {
BlockVector bvec(0.0);
bvec[pressureEqnIndex] = 1;
weights_ = getSimpleWeights(bvec);
} else {
if (parameters_.system_strategy_ != "none") {
OpmLog::warning("unknown_system_strategy", "Unknown linear solver system strategy: '" + parameters_.system_strategy_ + "', applying 'none' strategy.");
}
form_cpr = false;
}
if (parameters_.scale_linear_system_) {
// also scale weights
this->scaleEquationsAndVariables(weights_);
}
if (form_cpr && !(parameters_.cpr_use_drs_)) {
scaleMatrixAndRhs(weights_);
}
if (weights_.size() == 0) {
// if weights are not set cpr_use_drs_=false;
parameters_.cpr_use_drs_ = false;
}
} else {
if (parameters_.use_cpr_ && parameters_.cpr_use_drs_) {
OpmLog::warning("DRS_DISABLE", "Disabling DRS as matrix does not contain well contributions");
}
parameters_.cpr_use_drs_ = false;
if (parameters_.scale_linear_system_) {
// also scale weights
this->scaleEquationsAndVariables(weights_);
}
}
}
void setResidual(Vector& /* b */) {
// rhs_ = &b; // Must be handled in prepare() instead.
}
void getResidual(Vector& b) const {
b = *rhs_;
}
void setMatrix(const SparseMatrixAdapter& /* M */) {
// matrix_ = &M.istlMatrix(); // Must be handled in prepare() instead.
}
bool solve(Vector& x) {
const int verbosity = useFlexible_ ? prm_.get("verbosity", 0) : parameters_.linear_solver_verbosity_;
const bool write_matrix = verbosity > 10;
// Solve system.
if (useFlexible_)
{
Dune::InverseOperatorResult res;
assert(flexibleSolver_);
flexibleSolver_->apply(x, *rhs_, res);
iterations_ = res.iterations;
if (write_matrix) {
Opm::Helper::writeSystem(simulator_, //simulator is only used to get names
getMatrix(),
*rhs_,
comm_.get());
}
return converged_ = res.converged;
}
const WellModel& wellModel = simulator_.problem().wellModel();
if( isParallel() )
{
if ( ownersFirst_ && !parameters_.linear_solver_use_amg_ && !useFlexible_) {
typedef WellModelGhostLastMatrixAdapter< Matrix, Vector, Vector, WellModel, true > Operator;
assert(matrix_);
Operator opA(*matrix_, wellModel, interiorCellNum_);
solve( opA, x, *rhs_, *comm_ );
}
else {
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, WellModel, true > Operator;
assert (noGhostMat_);
copyJacToNoGhost(*matrix_, *noGhostMat_);
Operator opA(*noGhostMat_, wellModel,
comm_ );
solve( opA, x, *rhs_, *comm_ );
}
}
else
{
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, WellModel, false > Operator;
Operator opA(*matrix_, wellModel);
solve( opA, x, *rhs_ );
}
if (parameters_.scale_linear_system_) {
scaleSolution(x);
}
if (write_matrix) {
Opm::Helper::writeSystem(simulator_, //simulator is only used to get names
getMatrix(),
*rhs_,
comm_.get());
}
return converged_;
}
/// Solve the system of linear equations Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
/// \copydoc NewtonIterationBlackoilInterface::iterations
int iterations () const { return iterations_; }
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
const std::any& parallelInformation() const { return parallelInformation_; }
protected:
/// \brief construct the CPR preconditioner and the solver.
/// \tparam P The type of the parallel information.
/// \param parallelInformation the information about the parallelization.
template
void constructPreconditionerAndSolve(LinearOperator& linearOperator,
Vector& x, Vector& istlb,
const POrComm& parallelInformation_arg,
Dune::InverseOperatorResult& result) const
{
// Construct scalar product.
auto sp = Dune::createScalarProduct(parallelInformation_arg, category);
#if FLOW_SUPPORT_AMG // activate AMG if either flow_ebos is used or UMFPack is not available
if( parameters_.linear_solver_use_amg_ || parameters_.use_cpr_)
{
typedef ISTLUtility::CPRSelector< Matrix, Vector, Vector, POrComm> CPRSelectorType;
typedef typename CPRSelectorType::Operator MatrixOperator;
std::unique_ptr< MatrixOperator > opA;
if( ! std::is_same< LinearOperator, MatrixOperator > :: value )
{
// create new operator in case linear operator and matrix operator differ
opA.reset( CPRSelectorType::makeOperator( linearOperator.getmat(), parallelInformation_arg ) );
}
const double relax = parameters_.ilu_relaxation_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
if ( parameters_.use_cpr_ )
{
using MatrixType = typename MatrixOperator::matrix_type;
using CouplingMetric = Opm::Amg::Element;
using CritBase = Dune::Amg::SymmetricCriterion;
using Criterion = Dune::Amg::CoarsenCriterion;
using AMG = typename ISTLUtility
::BlackoilAmgSelector< MatrixType, Vector, Vector,POrComm, Criterion, pressureEqnIndex, pressureVarIndex >::AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
Criterion crit(15, 2000);
constructAMGPrecond( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
// Solve.
solve(linearOperator, x, istlb, *sp, *amg, result);
}
else
{
typedef typename CPRSelectorType::AMG AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
constructAMGPrecond( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
// Solve.
solve(linearOperator, x, istlb, *sp, *amg, result);
}
}
else
#endif
{
// tries to solve linear system
#if HAVE_CUDA
bool use_gpu = bdaBridge->getUseGpu();
if (use_gpu) {
WellContributions wellContribs;
if (!useWellConn_) {
simulator_.problem().wellModel().getWellContributions(wellContribs);
}
// Const_cast needed since the CUDA stuff overwrites values for better matrix condition..
bdaBridge->solve_system(const_cast(&getMatrix()), istlb, wellContribs, result);
if (result.converged) {
// get result vector x from non-Dune backend, iff solve was successful
bdaBridge->get_result(x);
} else {
// CPU fallback
use_gpu = bdaBridge->getUseGpu(); // update value, BdaBridge might have disabled cusparseSolver
if (use_gpu) {
OpmLog::warning("cusparseSolver did not converge, now trying Dune to solve current linear system...");
}
// call Dune
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
solve(linearOperator, x, istlb, *sp, *precond, result);
}
} else { // gpu is not selected or disabled
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
solve(linearOperator, x, istlb, *sp, *precond, result);
}
#else
// Construct preconditioner.
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
// Solve.
solve(linearOperator, x, istlb, *sp, *precond, result);
#endif
}
}
// 3x3 matrix block inversion was unstable at least 2.3 until and including
// 2.5.0. There may still be some issue with the 4x4 matrix block inversion
// we therefore still use the block inversion in OPM
typedef ParallelOverlappingILU0 >,
Vector, Vector> SeqPreconditioner;
template
std::unique_ptr constructPrecond(Operator& opA, const Dune::Amg::SequentialInformation&) const
{
const double relax = parameters_.ilu_relaxation_;
const int ilu_fillin = parameters_.ilu_fillin_level_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
const bool ilu_redblack = parameters_.ilu_redblack_;
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
std::unique_ptr precond(new SeqPreconditioner(opA.getmat(), ilu_fillin, relax, ilu_milu, ilu_redblack, ilu_reorder_spheres));
return precond;
}
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication Comm;
// 3x3 matrix block inversion was unstable from at least 2.3 until and
// including 2.5.0
typedef ParallelOverlappingILU0 ParPreconditioner;
template
std::unique_ptr
constructPrecond(Operator& opA, const Comm& comm) const
{
typedef std::unique_ptr Pointer;
const double relax = parameters_.ilu_relaxation_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
const bool ilu_redblack = parameters_.ilu_redblack_;
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
return Pointer(new ParPreconditioner(opA.getmat(), comm, relax, ilu_milu, interiorCellNum_, ilu_redblack, ilu_reorder_spheres));
}
#endif
template
void
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax, const MILU_VARIANT milu) const
{
ISTLUtility::template createAMGPreconditionerPointer( *opA, relax, milu, comm, amg );
}
template
void
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax,
const MILU_VARIANT /* milu */ ) const
{
ISTLUtility::template createAMGPreconditionerPointer( *opA, relax,
comm, amg, parameters_, weights_ );
}
/// \brief Solve the system using the given preconditioner and scalar product.
template
void solve(Operator& opA, Vector& x, Vector& istlb, ScalarProd& sp, Precond& precond, Dune::InverseOperatorResult& result) const
{
// TODO: Revise when linear solvers interface opm-core is done
// Construct linear solver.
// GMRes solver
int verbosity = 0;
if (simulator_.gridView().comm().rank() == 0)
verbosity = parameters_.linear_solver_verbosity_;
if ( parameters_.newton_use_gmres_ ) {
Dune::RestartedGMResSolver linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_restart_,
parameters_.linear_solver_maxiter_,
verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
else { // BiCGstab solver
Dune::BiCGSTABSolver linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_maxiter_,
verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
void solve(Matrix& A, Vector& x, Vector& b ) const
{
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
// Construct operator, scalar product and vectors needed.
typedef Dune::OverlappingSchwarzOperator Operator;
Operator opA(A, *comm_);
solve( opA, x, b, *comm_ );
}
else
#endif
{
// Construct operator, scalar product and vectors needed.
Dune::MatrixAdapter< Matrix, Vector, Vector> opA( A );
solve( opA, x, b );
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
template
void solve(Operator& opA OPM_UNUSED_NOMPI,
Vector& x OPM_UNUSED_NOMPI,
Vector& b OPM_UNUSED_NOMPI,
Comm& comm OPM_UNUSED_NOMPI) const
{
Dune::InverseOperatorResult result;
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
// Construct operator, scalar product and vectors needed.
constructPreconditionerAndSolve(opA, x, b, comm, result);
}
else
#endif
{
OPM_THROW(std::logic_error,"this method if for parallel solve only");
}
checkConvergence( result );
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
template
void solve(Operator& opA, Vector& x, Vector& b ) const
{
Dune::InverseOperatorResult result;
// Construct operator, scalar product and vectors needed.
Dune::Amg::SequentialInformation info;
constructPreconditionerAndSolve(opA, x, b, info, result);
checkConvergence( result );
}
void checkConvergence( const Dune::InverseOperatorResult& result ) const
{
// store number of iterations
iterations_ = result.iterations;
converged_ = result.converged;
// Check for failure of linear solver.
if (!parameters_.ignoreConvergenceFailure_ && !result.converged) {
const std::string msg("Convergence failure for linear solver.");
OPM_THROW_NOLOG(NumericalIssue, msg);
}
}
protected:
bool isParallel() const {
#if HAVE_MPI
return comm_->communicator().size() > 1;
#else
return false;
#endif
}
void prepareFlexibleSolver()
{
// Decide if we should recreate the solver or just do
// a minimal preconditioner update.
const int newton_iteration = this->simulator_.model().newtonMethod().numIterations();
bool recreate_solver = false;
if (this->parameters_.cpr_reuse_setup_ == 0) {
// Always recreate solver.
recreate_solver = true;
} else if (this->parameters_.cpr_reuse_setup_ == 1) {
// Recreate solver on the first iteration of every timestep.
if (newton_iteration == 0) {
recreate_solver = true;
}
} else if (this->parameters_.cpr_reuse_setup_ == 2) {
// Recreate solver if the last solve used more than 10 iterations.
if (this->iterations() > 10) {
recreate_solver = true;
}
} else {
assert(this->parameters_.cpr_reuse_setup_ == 3);
assert(recreate_solver == false);
// Never recreate solver.
}
std::function weightsCalculator;
auto preconditionerType = prm_.get("preconditioner.type", "cpr");
if( preconditionerType == "cpr" ||
preconditionerType == "cprt"
)
{
bool transpose = false;
if(preconditionerType == "cprt"){
transpose = true;
}
auto weightsType = prm_.get("preconditioner.weight_type", "quasiimpes");
auto pressureIndex = this->prm_.get("preconditioner.pressure_var_index", 1);
if(weightsType == "quasiimpes") {
// weighs will be created as default in the solver
weightsCalculator =
[this, transpose, pressureIndex](){
return Opm::Amg::getQuasiImpesWeights(getMatrix(),
pressureIndex,
transpose);
};
}else if(weightsType == "trueimpes" ){
weightsCalculator =
[this](){
return this->getStorageWeights();
};
}else{
OPM_THROW(std::invalid_argument, "Weights type " << weightsType << "not implemented for cpr."
<< " Please use quasiimpes or trueimpes.");
}
}
if (recreate_solver || !flexibleSolver_) {
if (isParallel()) {
#if HAVE_MPI
assert(noGhostMat_);
flexibleSolver_.reset(new FlexibleSolverType(*noGhostMat_, *comm_, prm_, weightsCalculator));
#endif
} else {
flexibleSolver_.reset(new FlexibleSolverType(*matrix_, prm_, weightsCalculator));
}
}
else
{
flexibleSolver_->preconditioner().update();
}
}
/// Create sparsity pattern of matrix without off-diagonal ghost entries.
void noGhostAdjacency()
{
const auto& grid = simulator_.vanguard().grid();
const auto& gridView = simulator_.vanguard().gridView();
// For some reason simulator_.model().elementMapper() is not initialized at this stage.
// Hence const auto& elemMapper = simulator_.model().elementMapper(); does not work.
// Set it up manually
using ElementMapper =
Dune::MultipleCodimMultipleGeomTypeMapper;
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
typedef typename Matrix::size_type size_type;
size_type numCells = grid.size( 0 );
noGhostMat_.reset(new Matrix(numCells, numCells, Matrix::random));
std::vector> pattern;
pattern.resize(numCells);
auto elemIt = gridView.template begin<0>();
const auto& elemEndIt = gridView.template end<0>();
//Loop over cells
for (; elemIt != elemEndIt; ++elemIt)
{
const auto& elem = *elemIt;
size_type idx = elemMapper.index(elem);
pattern[idx].insert(idx);
// Add well non-zero connections
for (auto wc = wellConnectionsGraph_[idx].begin(); wc!=wellConnectionsGraph_[idx].end(); ++wc)
pattern[idx].insert(*wc);
// Add just a single element to ghost rows
if (elem.partitionType() != Dune::InteriorEntity)
{
noGhostMat_->setrowsize(idx, pattern[idx].size());
}
else {
auto isend = gridView.iend(elem);
for (auto is = gridView.ibegin(elem); is!=isend; ++is)
{
//check if face has neighbor
if (is->neighbor())
{
size_type nid = elemMapper.index(is->outside());
pattern[idx].insert(nid);
}
}
noGhostMat_->setrowsize(idx, pattern[idx].size());
}
}
noGhostMat_->endrowsizes();
for (size_type dofId = 0; dofId < numCells; ++dofId)
{
auto nabIdx = pattern[dofId].begin();
auto endNab = pattern[dofId].end();
for (; nabIdx != endNab; ++nabIdx)
{
noGhostMat_->addindex(dofId, *nabIdx);
}
}
noGhostMat_->endindices();
}
/// Set the ghost diagonal in noGhost to diag(1.0)
void setGhostsInNoGhost(Matrix& ng)
{
ng=0;
typedef typename Matrix::block_type MatrixBlockTypeT;
MatrixBlockTypeT diag_block(0.0);
for (int eq = 0; eq < Matrix::block_type::rows; ++eq)
diag_block[eq][eq] = 1.0;
//loop over precalculated ghost rows and columns
for (auto row = overlapRows_.begin(); row != overlapRows_.end(); row++ )
{
int lcell = *row;
//diagonal block set to 1
ng[lcell][lcell] = diag_block;
}
}
/// Copy interior rows to noghost matrix
void copyJacToNoGhost(const Matrix& jac, Matrix& ng)
{
//Loop over precalculated interior rows.
for (auto row = interiorRows_.begin(); row != interiorRows_.end(); row++ )
{
//Copy row
ng[*row] = jac[*row];
}
}
// Weights to make approximate pressure equations.
// Calculated from the storage terms (only) of the
// conservation equations, ignoring all other terms.
Vector getStorageWeights() const
{
Vector weights(rhs_->size());
ElementContext elemCtx(simulator_);
Opm::Amg::getTrueImpesWeights(pressureVarIndex, weights, simulator_.vanguard().gridView(),
elemCtx, simulator_.model(),
ThreadManager::threadId());
return weights;
}
// Interaction between the CPR weights (the function argument 'weights')
// and the variable and equation weights from
// simulator_.model().primaryVarWeight() and
// simulator_.model().eqWeight() is nontrivial and does not work
// at the moment. Possibly refactoring of ewoms weight treatment
// is needed. In the meantime this function shows what needs to be
// done to integrate the weights properly.
void scaleEquationsAndVariables(Vector& weights)
{
// loop over primary variables
const auto endi = getMatrix().end();
for (auto i = getMatrix().begin(); i != endi; ++i) {
const auto endj = (*i).end();
BlockVector& brhs = (*rhs_)[i.index()];
for (auto j = (*i).begin(); j != endj; ++j) {
MatrixBlockType& block = *j;
for (std::size_t ii = 0; ii < block.rows; ii++ ) {
for (std::size_t jj = 0; jj < block.cols; jj++) {
double var_scale = simulator_.model().primaryVarWeight(i.index(),jj);
block[ii][jj] /= var_scale;
block[ii][jj] *= simulator_.model().eqWeight(i.index(), ii);
}
}
}
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
brhs[ii] *= simulator_.model().eqWeight(i.index(), ii);
}
if (weights.size() == getMatrix().N()) {
BlockVector& bw = weights[i.index()];
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
bw[ii] /= simulator_.model().eqWeight(i.index(), ii);
}
double abs_max =
*std::max_element(bw.begin(), bw.end(), [](double a, double b){ return std::abs(a) < std::abs(b); } );
bw /= abs_max;
}
}
}
void scaleSolution(Vector& x)
{
for (std::size_t i = 0; i < x.size(); ++i) {
auto& bx = x[i];
for (std::size_t jj = 0; jj < bx.size(); jj++) {
double var_scale = simulator_.model().primaryVarWeight(i,jj);
bx[jj] /= var_scale;
}
}
}
Vector getQuasiImpesWeights()
{
return Amg::getQuasiImpesWeights(getMatrix(), pressureVarIndex, /* transpose=*/ true);
}
Vector getSimpleWeights(const BlockVector& rhs)
{
Vector weights(rhs_->size(), 0);
for (auto& bw : weights) {
bw = rhs;
}
return weights;
}
void scaleMatrixAndRhs(const Vector& weights)
{
using Block = typename Matrix::block_type;
const auto endi = getMatrix().end();
for (auto i = getMatrix().begin(); i !=endi; ++i) {
const BlockVector& bweights = weights[i.index()];
BlockVector& brhs = (*rhs_)[i.index()];
const auto endj = (*i).end();
for (auto j = (*i).begin(); j != endj; ++j) {
// assume it is something on all rows
Block& block = (*j);
BlockVector neweq(0.0);
for (std::size_t ii = 0; ii < block.rows; ii++) {
for (std::size_t jj = 0; jj < block.cols; jj++) {
neweq[jj] += bweights[ii]*block[ii][jj];
}
}
block[pressureEqnIndex] = neweq;
}
Scalar newrhs(0.0);
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
newrhs += bweights[ii]*brhs[ii];
}
brhs[pressureEqnIndex] = newrhs;
}
}
static void multBlocksInMatrix(Matrix& ebosJac, const MatrixBlockType& trans, const bool left = true)
{
const int n = ebosJac.N();
for (int row_index = 0; row_index < n; ++row_index) {
auto& row = ebosJac[row_index];
auto* dataptr = row.getptr();
for (int elem = 0; elem < row.N(); ++elem) {
auto& block = dataptr[elem];
if (left) {
block = block.leftmultiply(trans);
} else {
block = block.rightmultiply(trans);
}
}
}
}
static void multBlocksVector(Vector& ebosResid_cp, const MatrixBlockType& leftTrans)
{
for (auto& bvec : ebosResid_cp) {
auto bvec_new = bvec;
leftTrans.mv(bvec, bvec_new);
bvec = bvec_new;
}
}
static void scaleCPRSystem(Matrix& M_cp, Vector& b_cp, const MatrixBlockType& leftTrans)
{
multBlocksInMatrix(M_cp, leftTrans, true);
multBlocksVector(b_cp, leftTrans);
}
Matrix& getMatrix()
{
return noGhostMat_ ? *noGhostMat_ : *matrix_;
}
const Matrix& getMatrix() const
{
return noGhostMat_ ? *noGhostMat_ : *matrix_;
}
const Simulator& simulator_;
mutable int iterations_;
mutable bool converged_;
std::any parallelInformation_;
// non-const to be able to scale the linear system
Matrix* matrix_;
std::unique_ptr noGhostMat_;
Vector *rhs_;
std::unique_ptr flexibleSolver_;
std::vector overlapRows_;
std::vector interiorRows_;
std::vector> wellConnectionsGraph_;
bool ownersFirst_;
bool useWellConn_;
bool useFlexible_;
size_t interiorCellNum_;
FlowLinearSolverParameters parameters_;
boost::property_tree::ptree prm_;
Vector weights_;
bool scale_variables_;
std::shared_ptr< communication_type > comm_;
}; // end ISTLSolver
} // namespace Opm
#endif