// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::NcpPrimaryVariables
*/
#ifndef EWOMS_NCP_PRIMARY_VARIABLES_HH
#define EWOMS_NCP_PRIMARY_VARIABLES_HH
#include "ncpproperties.hh"
#include
#include
#include
#include
#include
#include
namespace Opm {
/*!
* \ingroup NcpModel
*
* \brief Represents the primary variables used by the compositional
* multi-phase NCP model.
*
* This class is basically a Dune::FieldVector which can retrieve its
* contents from an aribitatry fluid state.
*/
template
class NcpPrimaryVariables : public FvBasePrimaryVariables
{
using ParentType = FvBasePrimaryVariables;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using FluidSystem = GetPropType;
using MaterialLaw = GetPropType;
using MaterialLawParams = GetPropType;
using Indices = GetPropType;
enum { pressure0Idx = Indices::pressure0Idx };
enum { saturation0Idx = Indices::saturation0Idx };
enum { fugacity0Idx = Indices::fugacity0Idx };
enum { numPhases = getPropValue() };
enum { numComponents = getPropValue() };
using ComponentVector = Dune::FieldVector;
enum { enableEnergy = getPropValue() };
using EnergyModule = Opm::EnergyModule;
using NcpFlash = Opm::NcpFlash;
using Toolbox = Opm::MathToolbox;
public:
NcpPrimaryVariables() : ParentType()
{}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
*/
NcpPrimaryVariables(Scalar value) : ParentType(value)
{}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const
* ImmisciblePrimaryVariables& )
*/
NcpPrimaryVariables(const NcpPrimaryVariables& value) = default;
NcpPrimaryVariables& operator=(const NcpPrimaryVariables& value) = default;
/*!
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
*/
template
void assignMassConservative(const FluidState& fluidState,
const MaterialLawParams& matParams,
bool isInEquilibrium = false)
{
using FsToolbox = Opm::MathToolbox;
#ifndef NDEBUG
// make sure the temperature is the same in all fluid phases
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
assert(fluidState.temperature(0) == fluidState.temperature(phaseIdx));
}
#endif // NDEBUG
// for the equilibrium case, we don't need complicated
// computations.
if (isInEquilibrium) {
assignNaive(fluidState);
return;
}
// use a flash calculation to calculate a fluid state in
// thermodynamic equilibrium
typename FluidSystem::template ParameterCache paramCache;
Opm::CompositionalFluidState fsFlash;
// use the externally given fluid state as initial value for
// the flash calculation
fsFlash.assign(fluidState);
// calculate the phase densities
paramCache.updateAll(fsFlash);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fsFlash, paramCache, phaseIdx);
fsFlash.setDensity(phaseIdx, rho);
}
// calculate the "global molarities"
ComponentVector globalMolarities(0.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
globalMolarities[compIdx] +=
FsToolbox::value(fsFlash.saturation(phaseIdx))
* FsToolbox::value(fsFlash.molarity(phaseIdx, compIdx));
}
}
// run the flash calculation
NcpFlash::template solve(fsFlash, matParams, paramCache, globalMolarities);
// use the result to assign the primary variables
assignNaive(fsFlash);
}
/*!
* \copydoc ImmisciblePrimaryVariables::assignNaive
*/
template
void assignNaive(const FluidState& fluidState, unsigned refPhaseIdx = 0)
{
using FsToolbox = Opm::MathToolbox;
// assign the phase temperatures. this is out-sourced to
// the energy module
EnergyModule::setPriVarTemperatures(*this, fluidState);
// assign fugacities.
typename FluidSystem::template ParameterCache paramCache;
paramCache.updatePhase(fluidState, refPhaseIdx);
Scalar pRef = FsToolbox::value(fluidState.pressure(refPhaseIdx));
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
// we always compute the fugacities because they are quite exotic quantities
// and this easily forgotten to be specified
Scalar fugCoeff =
FluidSystem::template fugacityCoefficient(fluidState,
paramCache,
refPhaseIdx,
compIdx);
(*this)[fugacity0Idx + compIdx] =
fugCoeff*fluidState.moleFraction(refPhaseIdx, compIdx)*pRef;
}
// assign pressure of first phase
(*this)[pressure0Idx] = FsToolbox::value(fluidState.pressure(/*phaseIdx=*/0));
// assign first M - 1 saturations
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx)
(*this)[saturation0Idx + phaseIdx] = FsToolbox::value(fluidState.saturation(phaseIdx));
}
};
} // namespace Opm
#endif