// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::RichardsIntensiveQuantities
*/
#ifndef EWOMS_RICHARDS_INTENSIVE_QUANTITIES_HH
#define EWOMS_RICHARDS_INTENSIVE_QUANTITIES_HH
#include "richardsproperties.hh"
#include
#include
#include
namespace Opm {
/*!
* \ingroup RichardsModel
* \ingroup IntensiveQuantities
*
* \brief Intensive quantities required by the Richards model.
*/
template
class RichardsIntensiveQuantities
: public GetPropType
, public GetPropType::FluxIntensiveQuantities
{
using ParentType = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using FluidSystem = GetPropType;
using MaterialLaw = GetPropType;
using ElementContext = GetPropType;
using GridView = GetPropType;
using FluxModule = GetPropType;
using Indices = GetPropType;
enum { pressureWIdx = Indices::pressureWIdx };
enum { numPhases = FluidSystem::numPhases };
enum { liquidPhaseIdx = getPropValue() };
enum { gasPhaseIdx = getPropValue() };
enum { dimWorld = GridView::dimensionworld };
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
using DimMatrix = Dune::FieldMatrix;
using ScalarPhaseVector = Dune::FieldVector;
using PhaseVector = Dune::FieldVector;
using Toolbox = Opm::MathToolbox;
public:
//! The type returned by the fluidState() method
using FluidState = Opm::ImmiscibleFluidState;
RichardsIntensiveQuantities()
{}
RichardsIntensiveQuantities(const RichardsIntensiveQuantities& other) = default;
RichardsIntensiveQuantities& operator=(const RichardsIntensiveQuantities& other) = default;
/*!
* \copydoc IntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
const auto& T = elemCtx.problem().temperature(elemCtx, dofIdx, timeIdx);
fluidState_.setTemperature(T);
// material law parameters
const auto& problem = elemCtx.problem();
const typename MaterialLaw::Params& materialParams =
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
/////////
// calculate the pressures
/////////
// first, we have to find the minimum capillary pressure (i.e. Sw = 0)
fluidState_.setSaturation(liquidPhaseIdx, 1.0);
fluidState_.setSaturation(gasPhaseIdx, 0.0);
ScalarPhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
// non-wetting pressure can be larger than the
// reference pressure if the medium is fully
// saturated by the wetting phase
const Evaluation& pW = priVars.makeEvaluation(pressureWIdx, timeIdx);
Evaluation pN =
Toolbox::max(elemCtx.problem().referencePressure(elemCtx, dofIdx, /*timeIdx=*/0),
pW + (pC[gasPhaseIdx] - pC[liquidPhaseIdx]));
/////////
// calculate the saturations
/////////
fluidState_.setPressure(liquidPhaseIdx, pW);
fluidState_.setPressure(gasPhaseIdx, pN);
PhaseVector sat;
MaterialLaw::saturations(sat, materialParams, fluidState_);
fluidState_.setSaturation(liquidPhaseIdx, sat[liquidPhaseIdx]);
fluidState_.setSaturation(gasPhaseIdx, sat[gasPhaseIdx]);
typename FluidSystem::template ParameterCache paramCache;
paramCache.updateAll(fluidState_);
// compute and set the wetting phase viscosity
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, liquidPhaseIdx);
fluidState_.setViscosity(liquidPhaseIdx, mu);
fluidState_.setViscosity(gasPhaseIdx, 1e-20);
// compute and set the wetting phase density
const Evaluation& rho = FluidSystem::density(fluidState_, paramCache, liquidPhaseIdx);
fluidState_.setDensity(liquidPhaseIdx, rho);
fluidState_.setDensity(gasPhaseIdx, 1e-20);
// relperms
MaterialLaw::relativePermeabilities(relativePermeability_, materialParams, fluidState_);
// mobilities
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
mobility_[phaseIdx] = relativePermeability_[phaseIdx]/fluidState_.viscosity(phaseIdx);
// porosity
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
// intrinsic permeability
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
// update the quantities specific for the velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
*/
const DimMatrix& intrinsicPermeability() const
{ return intrinsicPerm_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
*/
const Evaluation& relativePermeability(unsigned phaseIdx) const
{ return relativePermeability_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{ return mobility_[phaseIdx]; }
private:
FluidState fluidState_;
DimMatrix intrinsicPerm_;
std::array relativePermeability_;
std::array mobility_;
Evaluation porosity_;
};
} // namespace Opm
#endif