/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2014, 2015 Statoil ASA. Copyright 2015 NTNU Copyright 2015, 2016, 2017 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED #define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include BEGIN_PROPERTIES NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem, FlowNonLinearSolver, FlowModelParameters, FlowTimeSteppingParameters)); SET_STRING_PROP(EclFlowProblem, OutputDir, ""); SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false); // default in flow is to formulate the equations in surface volumes SET_BOOL_PROP(EclFlowProblem, BlackoilConserveSurfaceVolume, true); SET_BOOL_PROP(EclFlowProblem, UseVolumetricResidual, false); SET_TYPE_PROP(EclFlowProblem, EclAquiferModel, Opm::BlackoilAquiferModel); // disable all extensions supported by black oil model. this should not really be // necessary but it makes things a bit more explicit SET_BOOL_PROP(EclFlowProblem, EnablePolymer, false); SET_BOOL_PROP(EclFlowProblem, EnableSolvent, false); SET_BOOL_PROP(EclFlowProblem, EnableTemperature, true); SET_BOOL_PROP(EclFlowProblem, EnableEnergy, false); SET_TYPE_PROP(EclFlowProblem, EclWellModel, Opm::BlackoilWellModel); SET_TAG_PROP(EclFlowProblem, LinearSolverSplice, FlowIstlSolver); END_PROPERTIES namespace Opm { /// A model implementation for three-phase black oil. /// /// The simulator is capable of handling three-phase problems /// where gas can be dissolved in oil and vice versa. It /// uses an industry-standard TPFA discretization with per-phase /// upwind weighting of mobilities. template class BlackoilModelEbos { public: // --------- Types and enums --------- typedef WellStateFullyImplicitBlackoil WellState; typedef BlackoilModelParametersEbos ModelParameters; typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter; typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; typedef double Scalar; static const int numEq = Indices::numEq; static const int contiSolventEqIdx = Indices::contiSolventEqIdx; static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx; static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx; static const int contiPolymerMWEqIdx = Indices::contiPolymerMWEqIdx; static const int solventSaturationIdx = Indices::solventSaturationIdx; static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx; static const int polymerMoleWeightIdx = Indices::polymerMoleWeightIdx; static const int temperatureIdx = Indices::temperatureIdx; typedef Dune::FieldVector VectorBlockType; typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlockType; typedef typename SparseMatrixAdapter::IstlMatrix Mat; typedef Dune::BlockVector BVector; typedef ISTLSolverEbos ISTLSolverType; //typedef typename SolutionVector :: value_type PrimaryVariables ; // --------- Public methods --------- /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] wells well structure /// \param[in] vfp_properties Vertical flow performance tables /// \param[in] linsolver linear solver /// \param[in] eclState eclipse state /// \param[in] terminal_output request output to cout/cerr BlackoilModelEbos(Simulator& ebosSimulator, const ModelParameters& param, BlackoilWellModel& well_model, const bool terminal_output) : ebosSimulator_(ebosSimulator) , grid_(ebosSimulator_.vanguard().grid()) , phaseUsage_(phaseUsageFromDeck(eclState())) , has_disgas_(FluidSystem::enableDissolvedGas()) , has_vapoil_(FluidSystem::enableVaporizedOil()) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) , has_polymermw_(GET_PROP_VALUE(TypeTag, EnablePolymerMW)) , has_energy_(GET_PROP_VALUE(TypeTag, EnableEnergy)) , param_( param ) , well_model_ (well_model) , terminal_output_ (terminal_output) , current_relaxation_(1.0) , dx_old_(UgGridHelpers::numCells(grid_)) { // compute global sum of number of cells global_nc_ = detail::countGlobalCells(grid_); convergence_reports_.reserve(300); // Often insufficient, but avoids frequent moves. } bool isParallel() const { return grid_.comm().size() > 1; } const EclipseState& eclState() const { return ebosSimulator_.vanguard().eclState(); } /// Called once before each time step. /// \param[in] timer simulation timer void prepareStep(const SimulatorTimerInterface& timer) { // update the solution variables in ebos if ( timer.lastStepFailed() ) { ebosSimulator_.model().updateFailed(); } else { ebosSimulator_.model().advanceTimeLevel(); } // set the timestep size and episode index for ebos explicitly. ebos needs to // know the report step/episode index because of timing dependend data // despide the fact that flow uses its own time stepper. (The length of the // episode does not matter, though.) Scalar t = timer.simulationTimeElapsed(); ebosSimulator_.startNextEpisode(/*episodeStartTime=*/t, /*episodeLength=*/1e30); ebosSimulator_.setEpisodeIndex(timer.reportStepNum()); ebosSimulator_.setTime(t); ebosSimulator_.setTimeStepSize(timer.currentStepLength()); ebosSimulator_.setTimeStepIndex(ebosSimulator_.timeStepIndex() + 1); ebosSimulator_.problem().beginTimeStep(); unsigned numDof = ebosSimulator_.model().numGridDof(); wasSwitched_.resize(numDof); std::fill(wasSwitched_.begin(), wasSwitched_.end(), false); if (param_.update_equations_scaling_) { std::cout << "equation scaling not suported yet" << std::endl; //updateEquationsScaling(); } } /// Called once per nonlinear iteration. /// This model will perform a Newton-Raphson update, changing reservoir_state /// and well_state. It will also use the nonlinear_solver to do relaxation of /// updates if necessary. /// \param[in] iteration should be 0 for the first call of a new timestep /// \param[in] timer simulation timer /// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control) /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables template SimulatorReport nonlinearIteration(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& nonlinear_solver) { SimulatorReport report; failureReport_ = SimulatorReport(); Dune::Timer perfTimer; perfTimer.start(); if (iteration == 0) { // For each iteration we store in a vector the norms of the residual of // the mass balance for each active phase, the well flux and the well equations. residual_norms_history_.clear(); current_relaxation_ = 1.0; dx_old_ = 0.0; convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}}); convergence_reports_.back().report.reserve(11); } report.total_linearizations = 1; try { report += assembleReservoir(timer, iteration); report.assemble_time += perfTimer.stop(); } catch (...) { report.assemble_time += perfTimer.stop(); failureReport_ += report; // todo (?): make the report an attribute of the class throw; // continue throwing the stick } std::vector residual_norms; perfTimer.reset(); perfTimer.start(); // the step is not considered converged until at least minIter iterations is done { auto convrep = getConvergence(timer, iteration,residual_norms); report.converged = convrep.converged() && iteration > nonlinear_solver.minIter();; ConvergenceReport::Severity severity = convrep.severityOfWorstFailure(); convergence_reports_.back().report.push_back(std::move(convrep)); // Throw if any NaN or too large residual found. if (severity == ConvergenceReport::Severity::NotANumber) { OPM_THROW(Opm::NumericalIssue, "NaN residual found!"); } else if (severity == ConvergenceReport::Severity::TooLarge) { OPM_THROW(Opm::NumericalIssue, "Too large residual found!"); } } // checking whether the group targets are converged if (wellModel().wellCollection().groupControlActive()) { report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates()); } report.update_time += perfTimer.stop(); residual_norms_history_.push_back(residual_norms); if (!report.converged) { perfTimer.reset(); perfTimer.start(); report.total_newton_iterations = 1; // enable single precision for solvers when dt is smaller then 20 days //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ; // Compute the nonlinear update. const int nc = UgGridHelpers::numCells(grid_); BVector x(nc); // apply the Schur compliment of the well model to the reservoir linearized // equations wellModel().linearize(ebosSimulator().model().linearizer().jacobian(), ebosSimulator().model().linearizer().residual()); try { solveJacobianSystem(x); report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); } catch (...) { report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); failureReport_ += report; throw; // re-throw up } perfTimer.reset(); perfTimer.start(); // handling well state update before oscillation treatment is a decision based // on observation to avoid some big performance degeneration under some circumstances. // there is no theorectical explanation which way is better for sure. wellModel().postSolve(x); if (param_.use_update_stabilization_) { // Stabilize the nonlinear update. bool isOscillate = false; bool isStagnate = false; nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate); if (isOscillate) { current_relaxation_ -= nonlinear_solver.relaxIncrement(); current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax()); if (terminalOutputEnabled()) { std::string msg = " Oscillating behavior detected: Relaxation set to " + std::to_string(current_relaxation_); OpmLog::info(msg); } } nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_); } // Apply the update, with considering model-dependent limitations and // chopping of the update. updateSolution(x); report.update_time += perfTimer.stop(); } return report; } void printIf(int c, double x, double y, double eps, std::string type) { if (std::abs(x-y) > eps) { std::cout << type << " " <(); const auto& elemEndIt = gridView.template end(); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) continue; unsigned globalElemIdx = elemMapper.index(elem); const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx]; Scalar pressureNew; pressureNew = priVarsNew[Indices::pressureSwitchIdx]; Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 }; Scalar oilSaturationNew = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx]; oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsNew.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) { saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx]; oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew; } const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx]; Scalar pressureOld; pressureOld = priVarsOld[Indices::pressureSwitchIdx]; Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 }; Scalar oilSaturationOld = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSaturationIdx]; oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsOld.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) { saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx]; oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld; } Scalar tmp = pressureNew - pressureOld; resultDelta += tmp*tmp; resultDenom += pressureNew*pressureNew; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) { Scalar tmp = saturationsNew[phaseIdx] - saturationsOld[phaseIdx]; resultDelta += tmp*tmp; resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx]; } } resultDelta = gridView.comm().sum(resultDelta); resultDenom = gridView.comm().sum(resultDenom); if (resultDenom > 0.0) return resultDelta/resultDenom; return 0.0; } /// Number of linear iterations used in last call to solveJacobianSystem(). int linearIterationsLastSolve() const { return ebosSimulator_.model().newtonMethod().linearSolver().iterations (); } /// Solve the Jacobian system Jx = r where J is the Jacobian and /// r is the residual. void solveJacobianSystem(BVector& x) { auto& ebosJac = ebosSimulator_.model().linearizer().jacobian(); auto& ebosResid = ebosSimulator_.model().linearizer().residual(); // set initial guess x = 0.0; auto& ebosSolver = ebosSimulator_.model().newtonMethod().linearSolver(); ebosSolver.prepare(ebosJac, ebosResid); ebosSolver.setResidual(ebosResid); // actually, the error needs to be calculated after setResidual in order to // account for parallelization properly. since the residual of ECFV // discretizations does not need to be synchronized across processes to be // consistent, this is not relevant for OPM-flow... ebosSolver.setMatrix(ebosJac); ebosSolver.solve(x); } /// Apply an update to the primary variables. void updateSolution(const BVector& dx) { auto& ebosNewtonMethod = ebosSimulator_.model().newtonMethod(); SolutionVector& solution = ebosSimulator_.model().solution(/*timeIdx=*/0); ebosNewtonMethod.update_(/*nextSolution=*/solution, /*curSolution=*/solution, /*update=*/dx, /*resid=*/dx); // the update routines of the black // oil model do not care about the // residual // if the solution is updated, the intensive quantities need to be recalculated ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0); } /// Return true if output to cout is wanted. bool terminalOutputEnabled() const { return terminal_output_; } template double convergenceReduction(const CollectiveCommunication& comm, const double pvSumLocal, std::vector< Scalar >& R_sum, std::vector< Scalar >& maxCoeff, std::vector< Scalar >& B_avg) { // Compute total pore volume (use only owned entries) double pvSum = pvSumLocal; if( comm.size() > 1 ) { // global reduction std::vector< Scalar > sumBuffer; std::vector< Scalar > maxBuffer; const int numComp = B_avg.size(); sumBuffer.reserve( 2*numComp + 1 ); // +1 for pvSum maxBuffer.reserve( numComp ); for( int compIdx = 0; compIdx < numComp; ++compIdx ) { sumBuffer.push_back( B_avg[ compIdx ] ); sumBuffer.push_back( R_sum[ compIdx ] ); maxBuffer.push_back( maxCoeff[ compIdx ] ); } // Compute total pore volume sumBuffer.push_back( pvSum ); // compute global sum comm.sum( sumBuffer.data(), sumBuffer.size() ); // compute global max comm.max( maxBuffer.data(), maxBuffer.size() ); // restore values to local variables for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx ) { B_avg[ compIdx ] = sumBuffer[ buffIdx ]; ++buffIdx; R_sum[ compIdx ] = sumBuffer[ buffIdx ]; } for( int compIdx = 0; compIdx < numComp; ++compIdx ) { maxCoeff[ compIdx ] = maxBuffer[ compIdx ]; } // restore global pore volume pvSum = sumBuffer.back(); } // return global pore volume return pvSum; } // Get reservoir quantities on this process needed for convergence calculations. double localConvergenceData(std::vector& R_sum, std::vector& maxCoeff, std::vector& B_avg) { double pvSumLocal = 0.0; const auto& ebosModel = ebosSimulator_.model(); const auto& ebosProblem = ebosSimulator_.problem(); const auto& ebosResid = ebosSimulator_.model().linearizer().residual(); ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator().gridView(); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double pvValue = ebosProblem.porosity(cell_idx) * ebosModel.dofTotalVolume( cell_idx ); pvSumLocal += pvValue; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); B_avg[ compIdx ] += 1.0 / fs.invB(phaseIdx).value(); const auto R2 = ebosResid[cell_idx][compIdx]; R_sum[ compIdx ] += R2; maxCoeff[ compIdx ] = std::max( maxCoeff[ compIdx ], std::abs( R2 ) / pvValue ); } if ( has_solvent_ ) { B_avg[ contiSolventEqIdx ] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value(); const auto R2 = ebosResid[cell_idx][contiSolventEqIdx]; R_sum[ contiSolventEqIdx ] += R2; maxCoeff[ contiSolventEqIdx ] = std::max( maxCoeff[ contiSolventEqIdx ], std::abs( R2 ) / pvValue ); } if (has_polymer_ ) { B_avg[ contiPolymerEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value(); const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx]; R_sum[ contiPolymerEqIdx ] += R2; maxCoeff[ contiPolymerEqIdx ] = std::max( maxCoeff[ contiPolymerEqIdx ], std::abs( R2 ) / pvValue ); } if (has_polymermw_) { assert(has_polymer_); B_avg[contiPolymerMWEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value(); // the residual of the polymer molecular equation is scaled down by a 100, since molecular weight // can be much bigger than 1, and this equation shares the same tolerance with other mass balance equations // TODO: there should be a more general way to determine the scaling-down coefficient const auto R2 = ebosResid[cell_idx][contiPolymerMWEqIdx] / 100.; R_sum[contiPolymerMWEqIdx] += R2; maxCoeff[contiPolymerMWEqIdx] = std::max( maxCoeff[contiPolymerMWEqIdx], std::abs( R2 ) / pvValue ); } if (has_energy_ ) { B_avg[ contiEnergyEqIdx ] += 1.0; const auto R2 = ebosResid[cell_idx][contiEnergyEqIdx]; R_sum[ contiEnergyEqIdx ] += R2; maxCoeff[ contiEnergyEqIdx ] = std::max( maxCoeff[ contiEnergyEqIdx ], std::abs( R2 ) / pvValue ); } } // compute local average in terms of global number of elements const int bSize = B_avg.size(); for ( int i = 0; i& B_avg, std::vector& residual_norms) { typedef std::vector< Scalar > Vector; const double tol_mb = param_.tolerance_mb_; const double tol_cnv = (iteration < param_.max_strict_iter_) ? param_.tolerance_cnv_ : param_.tolerance_cnv_relaxed_; const int numComp = numEq; Vector R_sum(numComp, 0.0 ); Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() ); const double pvSumLocal = localConvergenceData(R_sum, maxCoeff, B_avg); // compute global sum and max of quantities const double pvSum = convergenceReduction(grid_.comm(), pvSumLocal, R_sum, maxCoeff, B_avg); // Finish computation std::vector CNV(numComp); std::vector mass_balance_residual(numComp); for ( int compIdx = 0; compIdx < numComp; ++compIdx ) { CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx]; mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum; residual_norms.push_back(CNV[compIdx]); } // Setup component names, only the first time the function is run. static std::vector compNames; if (compNames.empty()) { compNames.resize(numComp); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx); const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx); compNames[compIdx] = FluidSystem::componentName(canonicalCompIdx); } if (has_solvent_) { compNames[solventSaturationIdx] = "Solvent"; } if (has_polymer_) { compNames[polymerConcentrationIdx] = "Polymer"; } if (has_polymermw_) { assert(has_polymer_); compNames[polymerMoleWeightIdx] = "MolecularWeightP"; } if (has_energy_) { compNames[temperatureIdx] = "Energy"; } } // Create convergence report. ConvergenceReport report; using CR = ConvergenceReport; for (int compIdx = 0; compIdx < numComp; ++compIdx) { double res[2] = { mass_balance_residual[compIdx], CNV[compIdx] }; CR::ReservoirFailure::Type types[2] = { CR::ReservoirFailure::Type::MassBalance, CR::ReservoirFailure::Type::Cnv }; double tol[2] = { tol_mb, tol_cnv }; for (int ii : {0, 1}) { if (std::isnan(res[ii])) { report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx}); if ( terminal_output_ ) { OpmLog::debug("NaN residual for " + compNames[compIdx] + " equation."); } } else if (res[ii] > maxResidualAllowed()) { report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx}); if ( terminal_output_ ) { OpmLog::debug("Too large residual for " + compNames[compIdx] + " equation."); } } else if (res[ii] < 0.0) { report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx}); if ( terminal_output_ ) { OpmLog::debug("Negative residual for " + compNames[compIdx] + " equation."); } } else if (res[ii] > tol[ii]) { report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx}); } } } // Output of residuals. if ( terminal_output_ ) { // Only rank 0 does print to std::cout if (iteration == 0) { std::string msg = "Iter"; for (int compIdx = 0; compIdx < numComp; ++compIdx) { msg += " MB("; msg += compNames[compIdx][0]; msg += ") "; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { msg += " CNV("; msg += compNames[compIdx][0]; msg += ") "; } OpmLog::debug(msg); } std::ostringstream ss; const std::streamsize oprec = ss.precision(3); const std::ios::fmtflags oflags = ss.setf(std::ios::scientific); ss << std::setw(4) << iteration; for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << mass_balance_residual[compIdx]; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << CNV[compIdx]; } ss.precision(oprec); ss.flags(oflags); OpmLog::debug(ss.str()); } return report; } /// Compute convergence based on total mass balance (tol_mb) and maximum /// residual mass balance (tol_cnv). /// \param[in] timer simulation timer /// \param[in] iteration current iteration number /// \param[out] residual_norms CNV residuals by phase ConvergenceReport getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector& residual_norms) { // Get convergence reports for reservoir and wells. std::vector B_avg(numEq, 0.0); auto report = getReservoirConvergence(timer.currentStepLength(), iteration, B_avg, residual_norms); report += wellModel().getWellConvergence(B_avg); // Throw if any NaN or too large residual found. ConvergenceReport::Severity severity = report.severityOfWorstFailure(); if (severity == ConvergenceReport::Severity::NotANumber) { OPM_THROW(Opm::NumericalIssue, "NaN residual found!"); } else if (severity == ConvergenceReport::Severity::TooLarge) { OPM_THROW(Opm::NumericalIssue, "Too large residual found!"); } return report; } /// The number of active fluid phases in the model. int numPhases() const { return phaseUsage_.num_phases; } /// Wrapper required due to not following generic API template std::vector > computeFluidInPlace(const T&, const std::vector& fipnum) const { return computeFluidInPlace(fipnum); } /// Should not be called std::vector > computeFluidInPlace(const std::vector& /*fipnum*/) const { //assert(true) //return an empty vector std::vector > regionValues(0, std::vector(0,0.0)); return regionValues; } const Simulator& ebosSimulator() const { return ebosSimulator_; } Simulator& ebosSimulator() { return ebosSimulator_; } /// return the statistics if the nonlinearIteration() method failed const SimulatorReport& failureReport() const { return failureReport_; } struct StepReport { int report_step; int current_step; std::vector report; }; const std::vector& stepReports() const { return convergence_reports_; } protected: const ISTLSolverType& istlSolver() const { assert( istlSolver_ ); return *istlSolver_; } // --------- Data members --------- Simulator& ebosSimulator_; const Grid& grid_; const ISTLSolverType* istlSolver_; const PhaseUsage phaseUsage_; const bool has_disgas_; const bool has_vapoil_; const bool has_solvent_; const bool has_polymer_; const bool has_polymermw_; const bool has_energy_; ModelParameters param_; SimulatorReport failureReport_; // Well Model BlackoilWellModel& well_model_; /// \brief Whether we print something to std::cout bool terminal_output_; /// \brief The number of cells of the global grid. long int global_nc_; std::vector> residual_norms_history_; double current_relaxation_; BVector dx_old_; std::vector convergence_reports_; public: /// return the StandardWells object BlackoilWellModel& wellModel() { return well_model_; } const BlackoilWellModel& wellModel() const { return well_model_; } void beginReportStep(bool isRestart) { ebosSimulator_.problem().beginEpisode(isRestart); } void endReportStep() { ebosSimulator_.problem().endEpisode(); } private: double dpMaxRel() const { return param_.dp_max_rel_; } double dsMax() const { return param_.ds_max_; } double drMaxRel() const { return param_.dr_max_rel_; } double maxResidualAllowed() const { return param_.max_residual_allowed_; } public: std::vector wasSwitched_; }; } // namespace Opm #endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED