/*
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
namespace bda
{
using Opm::OpmLog;
/*Sort a row of matrix elements from a blocked CSR-format.*/
template
void sortBlockedRow(int *colIndices, double *data, int left, int right) {
const unsigned int bs = block_size;
int l = left;
int r = right;
int middle = colIndices[(l + r) >> 1];
double lDatum[bs * bs];
do {
while (colIndices[l] < middle)
l++;
while (colIndices[r] > middle)
r--;
if (l <= r) {
int lColIndex = colIndices[l];
colIndices[l] = colIndices[r];
colIndices[r] = lColIndex;
memcpy(lDatum, data + l * bs * bs, sizeof(double) * bs * bs);
memcpy(data + l * bs * bs, data + r * bs * bs, sizeof(double) * bs * bs);
memcpy(data + r * bs * bs, lDatum, sizeof(double) * bs * bs);
l++;
r--;
}
} while (l < r);
if (left < r)
sortBlockedRow(colIndices, data, left, r);
if (right > l)
sortBlockedRow(colIndices, data, l, right);
}
// LUMat->nnzValues[ik] = LUMat->nnzValues[ik] - (pivot * LUMat->nnzValues[jk]) in ilu decomposition
// a = a - (b * c)
template
void blockMultSub(double *a, double *b, double *c)
{
for (unsigned int row = 0; row < block_size; row++) {
for (unsigned int col = 0; col < block_size; col++) {
double temp = 0.0;
for (unsigned int k = 0; k < block_size; k++) {
temp += b[block_size * row + k] * c[block_size * k + col];
}
a[block_size * row + col] -= temp;
}
}
}
/*Perform a 3x3 matrix-matrix multiplicationj on two blocks*/
template
void blockMult(double *mat1, double *mat2, double *resMat) {
for (unsigned int row = 0; row < block_size; row++) {
for (unsigned int col = 0; col < block_size; col++) {
double temp = 0;
for (unsigned int k = 0; k < block_size; k++) {
temp += mat1[block_size * row + k] * mat2[block_size * k + col];
}
resMat[block_size * row + col] = temp;
}
}
}
#if HAVE_FPGA
/*Subtract two blocks from one another element by element*/
template
void blockSub(double *mat1, double *mat2, double *resMat) {
for (unsigned int row = 0; row < block_size; row++) {
for (unsigned int col = 0; col < block_size; col++) {
resMat[row * block_size + col] = mat1[row * block_size + col] - mat2[row * block_size + col];
}
}
}
/*Multiply a block with a vector block, and add the result, scaled by a constant, to the result vector*/
template
void blockVectMult(double *mat, double *vect, double scale, double *resVect, bool resetRes) {
for (unsigned int row = 0; row < block_size; row++) {
if (resetRes) {
resVect[row] = 0.0;
}
for (unsigned int col = 0; col < block_size; col++) {
resVect[row] += scale * mat[row * block_size + col] * vect[col];
}
}
}
template
int BlockedMatrix::countUnblockedNnzs() {
int numNnzsOverThreshold = 0;
int totalNnzs = rowPointers[Nb];
for (unsigned int idx = 0; idx < totalNnzs * block_size * block_size; idx++) {
if (fabs(nnzValues[idx]) > nnzThreshold) {
numNnzsOverThreshold++;
}
}
return numNnzsOverThreshold;
}
/*
* Unblock the blocked matrix. Input the blocked matrix and output a CSR matrix without blocks.
* If unblocking the U matrix, the rows in all blocks need to written to the new matrix in reverse order.
*/
template
void BlockedMatrix::unblock(Matrix *mat, bool isUMatrix) {
const unsigned int bs = block_size;
int valIndex = 0, nnzsPerRow;
mat->rowPointers[0] = 0;
// go through the blocked matrix row-by row of blocks, and then row-by-row inside the block, and
// write all non-zero values and corresponding column indices that belong to the same row into the new matrix.
for (int row = 0; row < Nb; row++) {
for (unsigned int bRow = 0; bRow < bs; bRow++) {
nnzsPerRow = 0;
for (int col = rowPointers[row]; col < rowPointers[row + 1]; col++) {
for (unsigned int bCol = 0; bCol < bs; bCol++) {
int idx = 0;
// If the matrix is the U matrix, store the rows inside a block in reverse order.
if (isUMatrix) {
idx = col * bs * bs + (bs - bRow - 1) * bs + bCol;
} else {
idx = col * bs * bs + bRow * bs + bCol;
}
if (fabs(nnzValues[idx]) > nnzThreshold) {
mat->nnzValues[valIndex] = nnzValues[idx];
mat->colIndices[valIndex] = colIndices[col] * bs + bCol;
valIndex++;
nnzsPerRow++;
}
}
}
// Update the rowpointers of the new matrix
mat->rowPointers[row * bs + bRow + 1] = mat->rowPointers[row * bs + bRow] + nnzsPerRow;
}
}
}
/*Optimized version*/
// ub* prefixes indicate unblocked data
template
int BlockedMatrix::toRDF(int numColors, int *nodesPerColor, bool isUMatrix,
std::vector >& colIndicesInColor, int nnzsPerRowLimit, int *nnzValsSizes,
std::vector >& ubNnzValues, short int *ubColIndices, unsigned char *NROffsets, int *colorSizes, int *valSize)
{
int res;
int numUnblockedNnzs = countUnblockedNnzs();
// initialize the non-blocked matrix with the obtained size.
std::unique_ptr ubMat = std::make_unique(Nb * block_size, numUnblockedNnzs);
unblock(ubMat.get(), isUMatrix);
std::vector ubNodesPerColor(numColors);
for (int i = 0; i < numColors; i++) {
ubNodesPerColor[i] = nodesPerColor[i] * block_size;
}
*valSize = ubMat->nnzs;
res = ubMat->toRDF(numColors, ubNodesPerColor,
colIndicesInColor, nnzsPerRowLimit,
ubNnzValues, ubColIndices, nnzValsSizes,
NROffsets, colorSizes);
return res;
}
// coloring is already done, numColors and nodesPerColor are set
// [rows|columns]PerColorLimit are already queried from the FPGA
// colIndicesInColor, PIndicesAddr and colorSizes are written here
// There are 3 matrices analysed: the full matrix for spmv, L and U for ILU
// node == row
// color == partition
// colorSizes: contains meta info about a color/partition, like number of rows and number of nnzs
// colIndicesInColor: for each color: mapping of colIdx to colValue, unblocked. Used in Matrix::toRDF().
// due to partitioning, lots of columns are removed, this matrix keeps track of the mapping
// PIndicesAddr: contiguously for each color: indices of x in global x vector, unblocked
// if color 0 has A unique colAccesses, PIndicesAddr[0 - A] are for color 0
// then PIndicesAddr[A - A+B] are for color 1. Directly copied to FPGA
template
int BlockedMatrix::findPartitionColumns(int numColors, int *nodesPerColor,
int rowsPerColorLimit, int columnsPerColorLimit,
std::vector >& colIndicesInColor, int *PIndicesAddr, int *colorSizes,
std::vector >& LColIndicesInColor, int *LPIndicesAddr, int *LColorSizes,
std::vector >& UColIndicesInColor, int *UPIndicesAddr, int *UColorSizes)
{
// Data related to column indices per partition
int doneRows = 0;
std::vector isColAccessed(Nb); // std::vector might have some different optimized implementation, initialize in a loop
std::vector isLColAccessed(Nb);
int totalCols = 0; // sum of numColAccesses for each color, blocked
int LTotalCols = 0, UTotalCols = 0;
int maxCols = 0; // max value of numColAccesses for any color
int maxRowsPerColor = 0; // max value of numRows for any color
int maxColsPerRow = 0; // max value of colsPerRow for any color
// colsInColor holds all (blocked) columnIndices that are accessed by that color without duplicates
// colsInColor[c][i] contains the ith column that color c accesses
// initial size allows for each color to access all columns, with space for padding
std::vector > colsInColor(numColors, std::vector(roundUpTo(Nb, 16)));
std::vector > LColsInColor(numColors, std::vector(roundUpTo(Nb, 16)));
std::vector > UColsInColor(numColors, std::vector(roundUpTo(Nb, 16)));
// find which columns are accessed in each color, as well as how many non-zeroes there are per color.
for (int c = 0; c < numColors; c++) {
int numRows = 0;
// initialize
for (int row = 0; row < Nb; row++) {
isColAccessed[row] = false;
isLColAccessed[row] = false;
}
if (c > 0) {
for (int i = doneRows - nodesPerColor[c - 1]; i < doneRows; i++) {
isLColAccessed[i] = true;
}
}
int numColAccesses = 0, LNumColAccesses = 0, UNumColAccesses = 0; // number of unique accesses, blocked
// for every row in this color
for (int row = doneRows; row < doneRows + nodesPerColor[c]; row++) {
int colsPerRow = 0; // number of blocks for this row
bool rowIsEmpty = (rowPointers[row] == rowPointers[row + 1]);
for (int idx = rowPointers[row]; idx < rowPointers[row + 1]; idx++) {
// for every column in the current row, check if that column was accessed before this color
int col = colIndices[idx];
if (isColAccessed[col] == false) {
colsInColor[c][numColAccesses] = col;
isColAccessed[col] = true;
numColAccesses++;
if (col > row) {
UColsInColor[numColors - c - 1][UNumColAccesses] = col;
UNumColAccesses++;
}
}
if (isLColAccessed[col] == false) {
if (col < row) {
LColsInColor[c][LNumColAccesses] = col;
LNumColAccesses++;
isLColAccessed[col] = true;
}
}
colsPerRow++;
}
if (rowIsEmpty != true) {
numRows++;
}
maxColsPerRow = std::max(maxColsPerRow, colsPerRow);
}
// add columns from previous color into L partition to simplify data forwarding
if (c > 0) {
for (int i = doneRows - nodesPerColor[c - 1]; i < doneRows; i++) {
LColsInColor[c][LNumColAccesses] = i;
LNumColAccesses++;
}
}
colorSizes[c * 4 + 10] = numColAccesses * block_size;
LColorSizes[c * 4 + 10] = LNumColAccesses * block_size;
UColorSizes[(numColors - c - 1) * 4 + 10] = UNumColAccesses * block_size;
// store mapping
for (int col = 0; col < numColAccesses; col++) {
for (unsigned int i = 0; i < block_size; i++) {
colIndicesInColor[c][colsInColor[c][col]*block_size + i] = col * block_size + i;
}
}
for (int col = 0; col < LNumColAccesses; col++) {
for (unsigned int i = 0; i < block_size; i++) {
LColIndicesInColor[c][LColsInColor[c][col]*block_size + i] = col * block_size + i;
}
}
for (int col = 0; col < UNumColAccesses; col++) {
for (unsigned int i = 0; i < block_size; i++) {
UColIndicesInColor[numColors - c - 1][UColsInColor[numColors - c - 1][col]*block_size + i] = col * block_size + i;
}
}
// zeropad the colsInColor number to the nearest multiple of 16, because there are 16 32-bit color_col_index values per cacheline
while (numColAccesses % 16 != 0) {
colsInColor[c][numColAccesses] = colsInColor[c][numColAccesses - 1];
numColAccesses++;
}
while (LNumColAccesses % 16 != 0) {
LColsInColor[c][LNumColAccesses] = LColsInColor[c][LNumColAccesses - 1];
LNumColAccesses++;
}
while (UNumColAccesses % 16 != 0) {
UColsInColor[numColors - c - 1][UNumColAccesses] = UColsInColor[numColors - c - 1][UNumColAccesses - 1];
UNumColAccesses++;
}
maxCols = std::max(numColAccesses, maxCols);
totalCols += numColAccesses;
LTotalCols += LNumColAccesses;
UTotalCols += UNumColAccesses;
doneRows = doneRows + nodesPerColor[c];
maxRowsPerColor = std::max(numRows, maxRowsPerColor);
}
if (maxCols * static_cast(block_size) > columnsPerColorLimit) {
std::ostringstream errorstring;
errorstring << "ERROR: Current reordering exceeds maximum number of columns per color limit: " << maxCols * block_size << " > " << columnsPerColorLimit;
OPM_THROW(std::logic_error, errorstring.str());
}
doneRows = 0;
int diagValsSize = 0;
int maxRows = 0;
for (int c = 0; c < numColors; c++) {
// calculate sizes that include zeropadding
diagValsSize += roundUpTo(nodesPerColor[c] * block_size * 4, 8);
doneRows += nodesPerColor[c];
if (nodesPerColor[c] * static_cast(block_size) > maxRows)
maxRows = nodesPerColor[c];
colorSizes[c * 4 + 9] = nodesPerColor[c] * block_size;
LColorSizes[c * 4 + 9] = nodesPerColor[c] * block_size;
UColorSizes[c * 4 + 9] = nodesPerColor[numColors - c - 1] * block_size;
}
if (maxRows * static_cast(block_size) > rowsPerColorLimit) {
std::ostringstream errorstring;
errorstring << "ERROR: Current reordering exceeds maximum number of columns per color limit: " << maxRows * block_size << " > " << rowsPerColorLimit;
OPM_THROW(std::logic_error, errorstring.str());
}
// create and fill sizes array as far as already possible
colorSizes[0] = Nb * block_size;
LColorSizes[0] = Nb * block_size;
UColorSizes[0] = Nb * block_size;
// col_sizes (but the matrix is square)
colorSizes[1] = Nb * block_size;
LColorSizes[1] = Nb * block_size;
UColorSizes[1] = Nb * block_size;
colorSizes[2] = totalCols * block_size;
LColorSizes[2] = LTotalCols * block_size;
UColorSizes[2] = UTotalCols * block_size;
// missing val_size, written in Matrix::toRDF()
colorSizes[4] = numColors;
LColorSizes[4] = numColors;
UColorSizes[4] = numColors;
// missing NRFlagsSize, written in Matrix::toRDF()
colorSizes[6] = diagValsSize;
LColorSizes[6] = diagValsSize;
UColorSizes[6] = diagValsSize;
int paddingIdx = numColors;
while (paddingIdx % 4 != 0) {
for (unsigned int i = 0; i < 4; i++) {
colorSizes[paddingIdx * 4 + 8 + i] = 0;
LColorSizes[paddingIdx * 4 + 8 + i] = 0;
UColorSizes[paddingIdx * 4 + 8 + i] = 0;
}
paddingIdx++;
}
int index = 0, Lindex = 0, Uindex = 0;
for (int c = 0; c < numColors; c++) {
// for each unique col access
for (int col = 0; col < colorSizes[c * 4 + 10] / static_cast(block_size) ; col++) {
for (unsigned int i = 0; i < block_size; i++) {
PIndicesAddr[index] = colsInColor[c][col] * block_size + i;
index++;
}
}
// add padding
while (index % 16 != 0) {
PIndicesAddr[index] = PIndicesAddr[index - 1];
index++;
}
for (int col = 0; col < LColorSizes[c * 4 + 10] / static_cast(block_size) ; col++) {
for (unsigned int i = 0; i < block_size; i++) {
LPIndicesAddr[Lindex] = LColsInColor[c][col] * block_size + i;
Lindex++;
}
}
while (Lindex % 16 != 0) {
LPIndicesAddr[Lindex] = LPIndicesAddr[Lindex - 1];
Lindex++;
}
for (int col = 0; col < UColorSizes[c * 4 + 10] / static_cast(block_size) ; col++) {
for (unsigned int i = 0; i < block_size; i++) {
UPIndicesAddr[Uindex] = UColsInColor[c][col] * block_size + i;
Uindex++;
}
}
while (Uindex % 16 != 0) {
UPIndicesAddr[Uindex] = UPIndicesAddr[Uindex - 1];
Uindex++;
}
}
return 0;
}
void blockedDiagtoRDF(double *blockedDiagVals, int rowSize, int numColors, std::vector& rowsPerColor, double *RDFDiag) {
const unsigned int block_size = 3;
int doneRows = rowSize - 1; // since the rows of U are reversed, the rows of the diag are also reversed
int RDFIndex = 0;
for (int c = 0; c < numColors; c++) {
for (int r = 0; r < rowsPerColor[c]; r++) {
// the rows in the block are reversed
for (int i = static_cast(block_size) - 1; i >= 0; i--) {
for (unsigned int j = 0; j < block_size; j++) {
RDFDiag[RDFIndex] = blockedDiagVals[(doneRows - r) * block_size * block_size + i * block_size + j];
RDFIndex++;
}
// add 4th column, zeropadding
RDFDiag[RDFIndex] = 0.0;
RDFIndex++;
}
}
doneRows -= rowsPerColor[c];
// make sure the color completely fills a cacheline
// a color with 3 blocks would otherwise leave space
while (RDFIndex % 8 != 0) {
RDFDiag[RDFIndex] = 0.0;
RDFIndex++;
}
}
assert(RDFIndex % 8 == 0);
}
#endif // HAVE_FPGA
#define INSTANTIATE_BDA_FUNCTIONS(n) \
template void sortBlockedRow(int *, double *, int, int); \
template void blockMultSub(double *, double *, double *); \
template void blockMult(double *, double *, double *); \
INSTANTIATE_BDA_FUNCTIONS(1);
INSTANTIATE_BDA_FUNCTIONS(2);
INSTANTIATE_BDA_FUNCTIONS(3);
INSTANTIATE_BDA_FUNCTIONS(4);
INSTANTIATE_BDA_FUNCTIONS(5);
INSTANTIATE_BDA_FUNCTIONS(6);
#undef INSTANTIATE_BDA_FUNCTIONS
#if HAVE_FPGA
#define INSTANTIATE_BDA_FPGA_FUNCTIONS(n) \
template void blockSub(double *, double *, double *); \
template void blockVectMult(double *, double *, double, double *, bool); \
template int BlockedMatrix::toRDF(int, int *, bool, \
std::vector >& , int, int *, \
std::vector >&, short int *, unsigned char *, int *, int *); \
template int BlockedMatrix::findPartitionColumns(int, int *, \
int, int, \
std::vector >& , int *, int *, \
std::vector >& , int *, int *, \
std::vector >& , int *, int *);
INSTANTIATE_BDA_FPGA_FUNCTIONS(1);
INSTANTIATE_BDA_FPGA_FUNCTIONS(2);
INSTANTIATE_BDA_FPGA_FUNCTIONS(3);
INSTANTIATE_BDA_FPGA_FUNCTIONS(4);
#undef INSTANTIATE_BDA_FPGA_FUNCTIONS
#endif // HAVE_FPGA
} // end namespace bda