// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseFdLocalLinearizer
*/
#ifndef EWOMS_FV_BASE_FD_LOCAL_LINEARIZER_HH
#define EWOMS_FV_BASE_FD_LOCAL_LINEARIZER_HH
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
// forward declaration
template
class FvBaseFdLocalLinearizer;
} // namespace Opm
namespace Opm::Properties {
// declare the property tags required for the finite differences local linearizer
namespace TTag {
struct FiniteDifferenceLocalLinearizer {};
} // namespace TTag
template
struct NumericDifferenceMethod { using type = UndefinedProperty; };
template
struct BaseEpsilon { using type = UndefinedProperty; };
// set the properties to be spliced in
template
struct LocalLinearizer
{ using type = FvBaseFdLocalLinearizer; };
template
struct Evaluation
{ using type = GetPropType; };
/*!
* \brief Specify which kind of method should be used to numerically
* calculate the partial derivatives of the residual.
*
* -1 means backward differences, 0 means central differences, 1 means
* forward differences. By default we use central differences.
*/
template
struct NumericDifferenceMethod { static constexpr int value = +1; };
//! The base epsilon value for finite difference calculations
template
struct BaseEpsilon
{
using type = GetPropType;
static constexpr type value = std::max(0.9123e-10, std::numeric_limits::epsilon()*1.23e3);
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Calculates the Jacobian of the local residual for finite volume spatial
* discretizations using a finite difference method
*
* The local Jacobian for a given context is defined as the derivatives of the residuals
* of all degrees of freedom featured by the stencil with regard to the primary variables
* of the stencil's "primary" degrees of freedom.
*
* This class implements numeric differentiation using finite difference methods, i.e.
* forward or backward differences (2nd order), or central differences (3rd order). The
* method used is determined by the "NumericDifferenceMethod" property:
*
* - If the value of this property is smaller than 0, backward differences are used,
* i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx \frac{f(x) - f(x - \epsilon)}{\epsilon}
* \f]
*
* - If the value of this property is 0, central differences are used, i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx
* \frac{f(x + \epsilon) - f(x - \epsilon)}{2 \epsilon}
* \f]
*
* - if the value of this property is larger than 0, forward differences are used, i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx
* \frac{f(x + \epsilon) - f(x)}{\epsilon}
* \f]
*
* Here, \f$ f \f$ is the residual function for all equations, \f$x\f$ is the value of a
* sub-control volume's primary variable at the evaluation point and \f$\epsilon\f$ is a
* small scalar value larger than 0.
*/
template
class FvBaseFdLocalLinearizer
{
private:
using Implementation = GetPropType;
using LocalResidual = GetPropType;
using Simulator = GetPropType;
using Problem = GetPropType;
using Model = GetPropType;
using PrimaryVariables = GetPropType;
using ElementContext = GetPropType;
using Scalar = GetPropType;
using GridView = GetPropType;
using Element = typename GridView::template Codim<0>::Entity;
enum { numEq = getPropValue() };
// extract local matrices from jacobian matrix for consistency
using ScalarMatrixBlock = typename GetPropType::MatrixBlock;
using ScalarVectorBlock = Dune::FieldVector;
using ScalarLocalBlockVector = Dune::BlockVector;
using ScalarLocalBlockMatrix = Dune::Matrix;
using LocalEvalBlockVector = typename LocalResidual::LocalEvalBlockVector;
#if __GNUC__ == 4 && __GNUC_MINOR__ <= 6
public:
// make older GCCs happy by providing a public copy constructor (this is necessary
// for their implementation of std::vector, although the method is never called...)
FvBaseFdLocalLinearizer(const FvBaseFdLocalLinearizer&)
: internalElemContext_(0)
{}
#else
// copying local residual objects around is a very bad idea, so we explicitly prevent
// it...
FvBaseFdLocalLinearizer(const FvBaseFdLocalLinearizer&) = delete;
#endif
public:
FvBaseFdLocalLinearizer()
: internalElemContext_(0)
{ }
~FvBaseFdLocalLinearizer()
{ delete internalElemContext_; }
/*!
* \brief Register all run-time parameters for the local jacobian.
*/
static void registerParameters()
{
Parameters::registerParam
("The method used for numeric differentiation (-1: backward "
"differences, 0: central differences, 1: forward differences)");
}
/*!
* \brief Initialize the local Jacobian object.
*
* At this point we can assume that everything has been allocated,
* although some objects may not yet be completely initialized.
*
* \param simulator The simulator object of the simulation.
*/
void init(Simulator& simulator)
{
simulatorPtr_ = &simulator;
delete internalElemContext_;
internalElemContext_ = new ElementContext(simulator);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* \param element The grid element for which the local residual and its local
* Jacobian should be calculated.
*/
void linearize(const Element& element)
{
linearize(*internalElemContext_, element);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* After calling this method the ElementContext is in an undefined state, so do not
* use it anymore!
*
* \param elemCtx The element execution context for which the local residual and its
* local Jacobian should be calculated.
*/
void linearize(ElementContext& elemCtx, const Element& elem)
{
elemCtx.updateAll(elem);
// update the weights of the primary variables for the context
model_().updatePVWeights(elemCtx);
resize_(elemCtx);
reset_(elemCtx);
// calculate the local residual
localResidual_.eval(residual_, elemCtx);
// calculate the local jacobian matrix
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < numPrimaryDof; dofIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
asImp_().evalPartialDerivative_(elemCtx, dofIdx, pvIdx);
// incorporate the partial derivatives into the local Jacobian matrix
updateLocalJacobian_(elemCtx, dofIdx, pvIdx);
}
}
}
/*!
* \brief Returns the unweighted epsilon value used to calculate
* the local derivatives
*/
static Scalar baseEpsilon()
{ return getPropValue(); }
/*!
* \brief Returns the epsilon value which is added and removed
* from the current solution.
*
* \param elemCtx The element execution context for which the
* local residual and its gradient should be
* calculated.
* \param dofIdx The local index of the element's vertex for
* which the local derivative ought to be calculated.
* \param pvIdx The index of the primary variable which gets varied
*/
Scalar numericEpsilon(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned pvIdx) const
{
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
Scalar pvWeight = elemCtx.model().primaryVarWeight(globalIdx, pvIdx);
assert(pvWeight > 0 && std::isfinite(pvWeight));
Valgrind::CheckDefined(pvWeight);
return baseEpsilon()/pvWeight;
}
/*!
* \brief Return reference to the local residual.
*/
LocalResidual& localResidual()
{ return localResidual_; }
/*!
* \brief Return reference to the local residual.
*/
const LocalResidual& localResidual() const
{ return localResidual_; }
/*!
* \brief Returns the local Jacobian matrix of the residual of a sub-control volume.
*
* \param domainScvIdx The local index of the sub control volume
* which contains the independents
* \param rangeScvIdx The local index of the sub control volume
* which contains the local residual
*/
const ScalarMatrixBlock& jacobian(unsigned domainScvIdx, unsigned rangeScvIdx) const
{ return jacobian_[domainScvIdx][rangeScvIdx]; }
/*!
* \brief Returns the local residual of a sub-control volume.
*
* \param dofIdx The local index of the sub control volume
*/
const ScalarVectorBlock& residual(unsigned dofIdx) const
{ return residual_[dofIdx]; }
protected:
Implementation& asImp_()
{ return *static_cast(this); }
const Implementation& asImp_() const
{ return *static_cast(this); }
const Simulator& simulator_() const
{ return *simulatorPtr_; }
const Problem& problem_() const
{ return simulatorPtr_->problem(); }
const Model& model_() const
{ return simulatorPtr_->model(); }
/*!
* \brief Returns the numeric difference method which is applied.
*/
static int numericDifferenceMethod_()
{ return EWOMS_GET_PARAM(TypeTag, int, NumericDifferenceMethod); }
/*!
* \brief Resize all internal attributes to the size of the
* element.
*/
void resize_(const ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
residual_.resize(numDof);
jacobian_.setSize(numDof, numPrimaryDof);
derivResidual_.resize(numDof);
}
/*!
* \brief Reset the all relevant internal attributes to 0
*/
void reset_(const ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned primaryDofIdx = 0; primaryDofIdx < numPrimaryDof; ++ primaryDofIdx)
for (unsigned dof2Idx = 0; dof2Idx < numDof; ++ dof2Idx)
jacobian_[dof2Idx][primaryDofIdx] = 0.0;
for (unsigned primaryDofIdx = 0; primaryDofIdx < numDof; ++ primaryDofIdx)
residual_[primaryDofIdx] = 0.0;
}
/*!
* \brief Compute the partial derivatives of a context's residual functions
*
* This method can be overwritten by the implementation if a better scheme than
* numerical differentiation is available.
*
* The default implementation of this method uses numeric differentiation,
* i.e. forward or backward differences (2nd order), or central differences (3rd
* order). The method used is determined by the "NumericDifferenceMethod" property:
*
* - If the value of this property is smaller than 0, backward differences are used,
* i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx \frac{f(x) - f(x - \epsilon)}{\epsilon}
* \f]
*
* - If the value of this property is 0, central differences are used, i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx
* \frac{f(x + \epsilon) - f(x - \epsilon)}{2 \epsilon}
* \f]
*
* - if the value of this property is larger than 0, forward
* differences are used, i.e.:
* \f[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \epsilon) - f(x)}{\epsilon}
* \f]
*
* Here, \f$ f \f$ is the residual function for all equations, \f$x\f$ is the value
* of a sub-control volume's primary variable at the evaluation point and
* \f$\epsilon\f$ is a small value larger than 0.
*
* \param elemCtx The element context for which the local partial
* derivative ought to be calculated
* \param dofIdx The sub-control volume index of the current
* finite element for which the partial derivative
* ought to be calculated
* \param pvIdx The index of the primary variable at the dofIdx'
* sub-control volume of the current finite element
* for which the partial derivative ought to be
* calculated
*/
void evalPartialDerivative_(ElementContext& elemCtx,
unsigned dofIdx,
unsigned pvIdx)
{
// save all quantities which depend on the specified primary
// variable at the given sub control volume
elemCtx.stashIntensiveQuantities(dofIdx);
PrimaryVariables priVars(elemCtx.primaryVars(dofIdx, /*timeIdx=*/0));
Scalar eps = asImp_().numericEpsilon(elemCtx, dofIdx, pvIdx);
Scalar delta = 0.0;
if (numericDifferenceMethod_() >= 0) {
// we are not using backward differences, i.e. we need to
// calculate f(x + \epsilon)
// deflect primary variables
priVars[pvIdx] += eps;
delta += eps;
// calculate the deflected residual
elemCtx.updateIntensiveQuantities(priVars, dofIdx, /*timeIdx=*/0);
elemCtx.updateAllExtensiveQuantities();
localResidual_.eval(derivResidual_, elemCtx);
}
else {
// we are using backward differences, i.e. we don't need
// to calculate f(x + \epsilon) and we can recycle the
// (already calculated) residual f(x)
derivResidual_ = residual_;
}
if (numericDifferenceMethod_() <= 0) {
// we are not using forward differences, i.e. we don't
// need to calculate f(x - \epsilon)
// deflect the primary variables
priVars[pvIdx] -= delta + eps;
delta += eps;
// calculate the deflected residual again, this time we use the local
// residual's internal storage.
elemCtx.updateIntensiveQuantities(priVars, dofIdx, /*timeIdx=*/0);
elemCtx.updateAllExtensiveQuantities();
localResidual_.eval(elemCtx);
derivResidual_ -= localResidual_.residual();
}
else {
// we are using forward differences, i.e. we don't need to
// calculate f(x - \epsilon) and we can recycle the
// (already calculated) residual f(x)
derivResidual_ -= residual_;
}
assert(delta > 0);
// divide difference in residuals by the magnitude of the
// deflections between the two function evaluation
derivResidual_ /= delta;
// restore the original state of the element's volume
// variables
elemCtx.restoreIntensiveQuantities(dofIdx);
#ifndef NDEBUG
for (unsigned i = 0; i < derivResidual_.size(); ++i)
Valgrind::CheckDefined(derivResidual_[i]);
#endif
}
/*!
* \brief Updates the current local Jacobian matrix with the partial derivatives of
* all equations for primary variable 'pvIdx' at the degree of freedom
* associated with 'focusDofIdx'.
*/
void updateLocalJacobian_(const ElementContext& elemCtx,
unsigned focusDofIdx,
unsigned pvIdx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of the
// residual function 'eqIdx' for the degree of freedom 'dofIdx' with
// regard to the primary variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx] = derivResidual_[dofIdx][eqIdx];
Valgrind::CheckDefined(jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx]);
}
}
}
Simulator *simulatorPtr_;
Model *modelPtr_;
ElementContext *internalElemContext_;
LocalEvalBlockVector residual_;
LocalEvalBlockVector derivResidual_;
ScalarLocalBlockMatrix jacobian_;
LocalResidual localResidual_;
};
} // namespace Opm
#endif