/* Copyright (c) 2017 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILOUTPUTEBOS_HEADER_INCLUDED #define OPM_BLACKOILOUTPUTEBOS_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_OPM_GRID #include #endif namespace Opm { /// Extra data to read/write for OPM restarting struct ExtraData { double suggested_step = -1.0; }; /** \brief Wrapper ECL output. */ template class BlackoilOutputEbos { public: typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; // constructor creating different sub writers BlackoilOutputEbos(Simulator& ebosSimulator, const ParameterGroup& param) : output_( [ ¶m ] () -> bool { // If output parameter is true or all, then we do output const std::string outputString = param.getDefault("output", std::string("all")); return ( outputString == "all" || outputString == "true" ); }() ), ebosSimulator_(ebosSimulator), phaseUsage_(phaseUsageFromDeck(eclState())), parallelOutput_( output_ ? new ParallelDebugOutput< Grid >( grid(), eclState(), schedule(), phaseUsage_.num_phases, phaseUsage_ ) : 0 ), restart_double_si_( output_ ? param.getDefault("restart_double_si", false) : false ), asyncOutput_() { // For output. if ( output_ ) { // create output thread if enabled and rank is I/O rank // async output is enabled by default if pthread are enabled #if HAVE_PTHREAD const bool asyncOutputDefault = true; #else const bool asyncOutputDefault = false; #endif if( param.getDefault("async_output", asyncOutputDefault ) ) { const bool isIORank = parallelOutput_ ? parallelOutput_->isIORank() : true; #if HAVE_PTHREAD asyncOutput_.reset( new ThreadHandle( isIORank ) ); #else OPM_THROW(std::runtime_error,"Pthreads were not found, cannot enable async_output"); #endif } } } /*! * \brief Write a blackoil reservoir state to disk for later inspection with * visualization tools like ResInsight. This function will extract the * requested output cell properties specified by the RPTRST keyword * and write these to file. */ template void writeTimeStep(const SimulatorTimerInterface& timer, const SimulationDataContainer& reservoirStateDummy, const Opm::WellStateFullyImplicitBlackoil& /*wellStateDummy*/, const Model& physicalModel, const bool substep = false, const double nextstep = -1.0, const SimulatorReport& simulatorReport = SimulatorReport()) { data::Solution fip{}; if( output_ ) { // Get FIP dat getSummaryData( fip, phaseUsage_, physicalModel, summaryConfig() ); // Add TCPU if simulatorReport is not defaulted. const double totalSolverTime = simulatorReport.solver_time; const Opm::WellStateFullyImplicitBlackoil& localWellState = physicalModel.wellModel().wellState(); if( parallelOutput_ && parallelOutput_->isParallel() ) { // If this is not the initial write and no substep, then the well // state used in the computation is actually the one of the last // step. We need that well state for the gathering. Otherwise // It an exception with a message like "global state does not // contain well ..." might be thrown. // The distribution of data::solution is not done here data::Solution localCellDataDummy{}; int wellStateStepNumber = ( ! substep && timer.reportStepNum() > 0) ? (timer.reportStepNum() - 1) : timer.reportStepNum(); // collect all solutions to I/O rank parallelOutput_->collectToIORank( reservoirStateDummy, localWellState, localCellDataDummy, wellStateStepNumber ); // Note that at this point the extraData are assumed to be global, i.e. identical across all processes. } const WellStateFullyImplicitBlackoil& wellState = (parallelOutput_ && parallelOutput_->isParallel() ) ? parallelOutput_->globalWellState() : localWellState; // The writeOutput expects a local data::solution vector and a global data::well vector. ebosSimulator_.problem().writeOutput( wellState.report(phaseUsage_), timer.simulationTimeElapsed(), substep, totalSolverTime, nextstep, fip); } } template void initFromRestartFile(const PhaseUsage& /*phaseUsage*/, const Grid& /*grid */, SimulationDataContainer& simulatorstate, WellState& wellstate, ExtraData& extra) { std::map extra_keys { {"OPMEXTRA" , false} }; // gives a dummy dynamic_list_econ_limited DynamicListEconLimited dummy_list_econ_limited; const auto& defunct_well_names = ebosSimulator_.gridManager().defunctWellNames(); WellsManager wellsmanager(eclState(), schedule(), eclState().getInitConfig().getRestartStep(), Opm::UgGridHelpers::numCells(grid()), Opm::UgGridHelpers::globalCell(grid()), Opm::UgGridHelpers::cartDims(grid()), Opm::UgGridHelpers::dimensions(grid()), Opm::UgGridHelpers::cell2Faces(grid()), Opm::UgGridHelpers::beginFaceCentroids(grid()), dummy_list_econ_limited, grid().comm().size() > 1, defunct_well_names); const Wells* wells = wellsmanager.c_wells(); std::map solution_keys {}; auto restart_values = ebosSimulator_.problem().eclIO().loadRestart(solution_keys, extra_keys); const int nw = wells->number_of_wells; if (nw > 0) { wellstate.resize(wells, simulatorstate, phaseUsage_ ); //Resize for restart step wellsToState( restart_values.wells, phaseUsage_, wellstate ); } const auto opmextra_iter = restart_values.extra.find("OPMEXTRA"); if (opmextra_iter != restart_values.extra.end()) { std::vector opmextra = opmextra_iter->second; assert(opmextra.size() == 1); extra.suggested_step = opmextra[0]; } else { OpmLog::warning("Restart data is missing OPMEXTRA field, restart run may deviate from original run."); extra.suggested_step = -1.0; } } bool requireFIPNUM() const { return summaryConfig().requireFIPNUM(); } const Grid& grid() { return ebosSimulator_.gridManager().grid(); } const Schedule& schedule() const { return ebosSimulator_.gridManager().schedule(); } const SummaryConfig& summaryConfig() const { return ebosSimulator_.gridManager().summaryConfig(); } const EclipseState& eclState() const { return ebosSimulator_.gridManager().eclState(); } bool isRestart() const { const auto& initconfig = eclState().getInitConfig(); return initconfig.restartRequested(); } private: /** * Checks if the summaryConfig has a keyword with the standardized field, region, or block prefixes. */ inline bool hasFRBKeyword(const SummaryConfig& summaryConfig, const std::string keyword) { std::string field_kw = "F" + keyword; std::string region_kw = "R" + keyword; std::string block_kw = "B" + keyword; return summaryConfig.hasKeyword(field_kw) || summaryConfig.hasKeyword(region_kw) || summaryConfig.hasKeyword(block_kw); } /** * Returns the data as asked for in the summaryConfig */ template void getSummaryData(data::Solution& output, const Opm::PhaseUsage& phaseUsage, const Model& physicalModel, const SummaryConfig& summaryConfig) { typedef typename Model::FIPDataType FIPDataType; typedef typename FIPDataType::VectorType VectorType; FIPDataType fd = physicalModel.getFIPData(); //Get shorthands for water, oil, gas const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua]; const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid]; const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour]; /** * Now process all of the summary config files */ // Water in place if (aqua_active && hasFRBKeyword(summaryConfig, "WIP")) { output.insert("WIP", Opm::UnitSystem::measure::volume, std::move( fd.fip[ FIPDataType::FIP_AQUA ] ), data::TargetType::SUMMARY ); } if (liquid_active) { const VectorType& oipl = fd.fip[FIPDataType::FIP_LIQUID]; VectorType oip ( oipl ); const size_t size = oip.size(); const VectorType& oipg = vapour_active ? fd.fip[FIPDataType::FIP_VAPORIZED_OIL] : VectorType(size, 0.0); if( vapour_active ) { // oip = oipl + oipg for( size_t i=0; i parallelOutput_; const bool restart_double_si_; std::unique_ptr< ThreadHandle > asyncOutput_; }; } #endif