/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include // A debugging utility. #define DUMP(foo) \ do { \ std::cout << "==========================================\n" \ << #foo ":\n" \ << collapseJacs(foo) << std::endl; \ } while (0) namespace Opm { typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef Eigen::Array DataBlock; namespace { std::vector buildAllCells(const int nc) { std::vector all_cells(nc); for (int c = 0; c < nc; ++c) { all_cells[c] = c; } return all_cells; } template AutoDiffBlock::M gravityOperator(const UnstructuredGrid& grid, const HelperOps& ops , const GeoProps& geo ) { const int nc = grid.number_of_cells; std::vector f2hf(2 * grid.number_of_faces, -1); for (int c = 0, i = 0; c < nc; ++c) { for (; i < grid.cell_facepos[c + 1]; ++i) { const int f = grid.cell_faces[ i ]; const int p = 0 + (grid.face_cells[2*f + 0] != c); f2hf[2*f + p] = i; } } typedef AutoDiffBlock::V V; typedef AutoDiffBlock::M M; const V& gpot = geo.gravityPotential(); const V& trans = geo.transmissibility(); const HelperOps::IFaces::Index ni = ops.internal_faces.size(); typedef Eigen::Triplet Tri; std::vector grav; grav.reserve(2 * ni); for (HelperOps::IFaces::Index i = 0; i < ni; ++i) { const int f = ops.internal_faces[ i ]; const int c1 = grid.face_cells[2*f + 0]; const int c2 = grid.face_cells[2*f + 1]; assert ((c1 >= 0) && (c2 >= 0)); const double dG1 = gpot[ f2hf[2*f + 0] ]; const double dG2 = gpot[ f2hf[2*f + 1] ]; const double t = trans[ f ]; grav.push_back(Tri(i, c1, t * dG1)); grav.push_back(Tri(i, c2, - t * dG2)); } M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end()); return G; } V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav) { const int nw = wells.number_of_wells; const int nperf = wells.well_connpos[nw]; const int dim = grid.dimensions; V wdp = V::Zero(nperf,1); assert(wdp.size() == rho.size()); // Main loop, iterate over all perforations, // using the following formula: // wdp(perf) = g*(perf_z - well_ref_z)*rho(perf) // where the total density rho(perf) is taken to be // sum_p (rho_p*saturation_p) in the perforation cell. // [although this is computed on the outside of this function]. for (int w = 0; w < nw; ++w) { const double ref_depth = wells.depth_ref[w]; for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) { const int cell = wells.well_cells[j]; const double cell_depth = grid.cell_centroids[dim * cell + dim - 1]; wdp[j] = rho[j]*grav*(cell_depth - ref_depth); } } return wdp; } template std::vector activePhases(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector active(maxnp, false); for (int p = 0; p < pu.MaxNumPhases; ++p) { active[ p ] = pu.phase_used[ p ] != 0; } return active; } template std::vector active2Canonical(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector act2can(maxnp, -1); for (int phase = 0; phase < maxnp; ++phase) { if (pu.phase_used[ phase ]) { act2can[ pu.phase_pos[ phase ] ] = phase; } } return act2can; } } // Anonymous namespace FullyImplicitBlackoilSolver:: FullyImplicitBlackoilSolver(const UnstructuredGrid& grid , const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const Wells& wells, const LinearSolverInterface& linsolver) : grid_ (grid) , fluid_ (fluid) , geo_ (geo) , rock_comp_props_(rock_comp_props) , wells_ (wells) , linsolver_ (linsolver) , active_(activePhases(fluid.phaseUsage())) , canph_ (active2Canonical(fluid.phaseUsage())) , cells_ (buildAllCells(grid.number_of_cells)) , ops_ (grid) , wops_ (wells) , grav_ (gravityOperator(grid_, ops_, geo_)) , rq_ (fluid.numPhases()) , phaseCondition_(grid.number_of_cells) , residual_ ( { std::vector(fluid.numPhases(), ADB::null()), ADB::null(), ADB::null() } ) { } void FullyImplicitBlackoilSolver:: step(const double dt, BlackoilState& x , WellStateFullyImplicitBlackoil& xw) { const V pvdt = geo_.poreVolume() / dt; classifyCondition(x); { const SolutionState state = constantState(x, xw); computeAccum(state, 0); } const double atol = 1.0e-12; const double rtol = 5.0e-8; const int maxit = 15; assemble(pvdt, x, xw); const double r0 = residualNorm(); int it = 0; std::cout << "\nIteration Residual\n" << std::setw(9) << it << std::setprecision(9) << std::setw(18) << r0 << std::endl; bool resTooLarge = r0 > atol; while (resTooLarge && (it < maxit)) { const V dx = solveJacobianSystem(); updateState(dx, x, xw); assemble(pvdt, x, xw); const double r = residualNorm(); resTooLarge = (r > atol) && (r > rtol*r0); it += 1; std::cout << std::setw(9) << it << std::setprecision(9) << std::setw(18) << r << std::endl; } if (resTooLarge) { std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n"; // OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations."); } } FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant() : accum(2, ADB::null()) , mflux( ADB::null()) , b ( ADB::null()) , head ( ADB::null()) , mob ( ADB::null()) { } FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np) : pressure ( ADB::null()) , saturation(np, ADB::null()) , rs ( ADB::null()) , rv ( ADB::null()) , qs ( ADB::null()) , bhp ( ADB::null()) { } FullyImplicitBlackoilSolver:: WellOps::WellOps(const Wells& wells) : w2p(wells.well_connpos[ wells.number_of_wells ], wells.number_of_wells) , p2w(wells.number_of_wells, wells.well_connpos[ wells.number_of_wells ]) { const int nw = wells.number_of_wells; const int* const wpos = wells.well_connpos; typedef Eigen::Triplet Tri; std::vector scatter, gather; scatter.reserve(wpos[nw]); gather .reserve(wpos[nw]); for (int w = 0, i = 0; w < nw; ++w) { for (; i < wpos[ w + 1 ]; ++i) { scatter.push_back(Tri(i, w, 1.0)); gather .push_back(Tri(w, i, 1.0)); } } w2p.setFromTriplets(scatter.begin(), scatter.end()); p2w.setFromTriplets(gather .begin(), gather .end()); } FullyImplicitBlackoilSolver::SolutionState FullyImplicitBlackoilSolver::constantState(const BlackoilState& x, const WellStateFullyImplicitBlackoil& xw) { const int nc = grid_.number_of_cells; const int np = x.numPhases(); // The block pattern assumes the following primary variables: // pressure // water saturation (if water present) // gas saturation, Rv (vapor oil/gas ratio) or Rs (solution gas/oil ratio) depending on hydrocarbon state // Gas only (undersaturated gas): Rv // Gas and oil: Sg // Oil only (undersaturated oil): Rs // well rates per active phase and well // well bottom-hole pressure // Note that oil is assumed to always be present, but is never // a primary variable. assert(active_[ Oil ]); std::vector bpat(np, nc); bpat.push_back(xw.bhp().size() * np); bpat.push_back(xw.bhp().size()); SolutionState state(np); // Pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); state.pressure = ADB::constant(p, bpat); // Saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const Opm::PhaseUsage pu = fluid_.phaseUsage(); { V so = V::Ones(nc, 1); if (active_[ Water ]) { const int pos = pu.phase_pos[ Water ]; const V sw = s.col(pos); so -= sw; state.saturation[pos] = ADB::constant(sw, bpat); } if (active_[ Gas ]) { const int pos = pu.phase_pos[ Gas ]; const V sg = s.col(pos); so -= sg; state.saturation[pos] = ADB::constant(sg, bpat); } if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; state.saturation[pos] = ADB::constant(so, bpat); } } // Solution Gas-oil ratio (rs). if (active_[ Oil ] && active_[ Gas ]) { const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); state.rs = ADB::constant(rs, bpat); } else { const V Rs = V::Zero(nc, 1); state.rs = ADB::constant(Rs, bpat); } // Vapor Oil-gas ratio (rv). if (active_[ Oil ] && active_[ Gas ]) { const V rv = Eigen::Map(& x.rv()[0], x.rv().size()); state.rv = ADB::constant(rv, bpat); } else { const V rv = V::Zero(nc, 1); state.rv = ADB::constant(rv, bpat); } // Well rates. assert (not xw.wellRates().empty()); // Need to reshuffle well rates, from ordered by wells, then phase, // to ordered by phase, then wells. const int nw = wells_.number_of_wells; // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(& xw.wellRates()[0], nw, np).transpose(); const V qs = Eigen::Map(wrates.data(), nw*np); state.qs = ADB::constant(qs, bpat); // Well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); state.bhp = ADB::constant(bhp, bpat); return state; } FullyImplicitBlackoilSolver::SolutionState FullyImplicitBlackoilSolver::variableState(const BlackoilState& x, const WellStateFullyImplicitBlackoil& xw) { const int nc = grid_.number_of_cells; const int np = x.numPhases(); std::vector vars0; // p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions vars0.reserve(np + 1); // Initial pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); vars0.push_back(p); // Initial saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const Opm::PhaseUsage pu = fluid_.phaseUsage(); // We do not handle a Water/Gas situation correctly, guard against it. assert (active_[ Oil]); if (active_[ Water ]) { const V sw = s.col(pu.phase_pos[ Water ]); vars0.push_back(sw); } // store cell status in vectors V isRs = V::Zero(nc,1); V isRv = V::Zero(nc,1); V isSg = V::Zero(nc,1); bool disgas = false; bool vapoil = false; if (active_[ Gas ]){ // this is a temporary hack to find if vapoil or disgas // is a active component. Should be given directly from // DISGAS and VAPOIL keywords in the deck. for (int c = 0; c < nc; c++){ if(x.rv()[c] > 0) vapoil = true; if(x.gasoilratio ()[c] > 0) disgas = true; } for (int c = 0; c < nc ; c++ ) { const PhasePresence cond = phaseCondition()[c]; if ( (!cond.hasFreeGas()) && disgas ) { isRs[c] = 1; } else if ( (!cond.hasFreeOil()) && vapoil ) { isRv[c] = 1; } else { isSg[c] = 1; } } // define new primary variable xvar depending on solution condition V xvar(nc); const V sg = s.col(pu.phase_pos[ Gas ]); const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); const V rv = Eigen::Map(& x.rv()[0], x.rv().size()); xvar = isRs*rs + isRv*rv + isSg*sg; vars0.push_back(xvar); } // Initial well rates. assert (not xw.wellRates().empty()); // Need to reshuffle well rates, from ordered by wells, then phase, // to ordered by phase, then wells. const int nw = wells_.number_of_wells; // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(& xw.wellRates()[0], nw, np).transpose(); const V qs = Eigen::Map(wrates.data(), nw*np); vars0.push_back(qs); // Initial well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); vars0.push_back(bhp); std::vector vars = ADB::variables(vars0); SolutionState state(np); // Pressure. int nextvar = 0; state.pressure = vars[ nextvar++ ]; // Saturations const std::vector& bpat = vars[0].blockPattern(); { ADB so = ADB::constant(V::Ones(nc, 1), bpat); if (active_[ Water ]) { ADB& sw = vars[ nextvar++ ]; state.saturation[pu.phase_pos[ Water ]] = sw; so = so - sw; } // Define Sg Rs and Rv in terms of xvar. std::vector all_cells = buildAllCells(nc); ADB rsSat = fluidRsSat(state.pressure,all_cells); ADB rvSat = fluidRvSat(state.pressure,all_cells); ADB xvar = vars[ nextvar++ ]; if (active_[ Gas]) { ADB sg = isSg*xvar + isRv* so; state.saturation[ pu.phase_pos[ Gas ] ] = sg; so = so - sg; if (disgas) { state.rs = (1-isRs) * rsSat + isRs*xvar; } else { state.rs = rsSat; } if (vapoil) { state.rv = (1-isRv) * rvSat + isRv*xvar; } else { state.rv = rvSat; } } if (active_[ Oil ]) { // Note that so is never a primary variable. state.saturation[ pu.phase_pos[ Oil ] ] = so; } } // Qs. state.qs = vars[ nextvar++ ]; // Bhp. state.bhp = vars[ nextvar++ ]; assert(nextvar == int(vars.size())); return state; } void FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state, const int aix ) { const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& press = state.pressure; const std::vector& sat = state.saturation; const ADB& rs = state.rs; const ADB& rv = state.rv; const std::vector cond = phaseCondition(); const ADB pv_mult = poroMult(press); const int maxnp = Opm::BlackoilPhases::MaxNumPhases; for (int phase = 0; phase < maxnp; ++phase) { if (active_[ phase ]) { const int pos = pu.phase_pos[ phase ]; rq_[pos].b = fluidReciprocFVF(phase, press, rs, rv, cond, cells_); rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos]; // DUMP(rq_[pos].b); // DUMP(rq_[pos].accum[aix]); } } if (active_[ Oil ] && active_[ Gas ]) { // Account for gas dissolved in oil and vaporized oil const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix]; rq_[po].accum[aix] += state.rv * rq_[pg].accum[aix]; //DUMP(rq_[pg].accum[aix]); } } void FullyImplicitBlackoilSolver:: assemble(const V& pvdt, const BlackoilState& x , const WellStateFullyImplicitBlackoil& xw ) { // Create the primary variables. const SolutionState state = variableState(x, xw); // -------- Mass balance equations -------- // Compute b_p and the accumulation term b_p*s_p for each phase, // except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o. // These quantities are stored in rq_[phase].accum[1]. // The corresponding accumulation terms from the start of // the timestep (b^0_p*s^0_p etc.) were already computed // in step() and stored in rq_[phase].accum[0]. computeAccum(state, 1); // Set up the common parts of the mass balance equations // for each active phase. const V transi = subset(geo_.transmissibility(), ops_.internal_faces); const std::vector kr = computeRelPerm(state); const std::vector pressures = computePressures(state); for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) { computeMassFlux(phaseIdx, transi, kr[phaseIdx], pressures[phaseIdx], state); // std::cout << "===== kr[" << phase << "] = \n" << std::endl; // std::cout << kr[phase]; // std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl; // std::cout << rq_[phase].mflux; residual_.mass_balance[ phaseIdx ] = pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0]) + ops_.div*rq_[phaseIdx].mflux; // DUMP(ops_.div*rq_[phase].mflux); // DUMP(residual_.mass_balance[phase]); } // -------- Extra (optional) rs and rv contributions to the mass balance equations -------- // Add the extra (flux) terms to the mass balance equations // From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv) // The extra terms in the accumulation part of the equation are already handled. if (active_[ Oil ] && active_[ Gas ]) { const int po = fluid_.phaseUsage().phase_pos[ Oil ]; const UpwindSelector upwindOil(grid_, ops_, rq_[po].head.value()); const ADB rs_face = upwindOil.select(state.rs); residual_.mass_balance[ Gas ] += ops_.div * (rs_face * rq_[po].mflux); const int pg = fluid_.phaseUsage().phase_pos[ Gas ]; const UpwindSelector upwindGas(grid_, ops_, rq_[pg].head.value()); const ADB rv_face = upwindGas.select(state.rv); residual_.mass_balance[ Oil ] += ops_.div * (rv_face * rq_[pg].mflux); // DUMP(residual_.mass_balance[ Gas ]); } // -------- Well equation, and well contributions to the mass balance equations -------- // Contribution to mass balance will have to wait. const int nc = grid_.number_of_cells; const int np = wells_.number_of_phases; const int nw = wells_.number_of_wells; const int nperf = wells_.well_connpos[nw]; const std::vector well_cells(wells_.well_cells, wells_.well_cells + nperf); const V transw = Eigen::Map(wells_.WI, nperf); const ADB& bhp = state.bhp; const DataBlock well_s = wops_.w2p * Eigen::Map(wells_.comp_frac, nw, np).matrix(); // Extract variables for perforation cell pressures // and corresponding perforation well pressures. const ADB p_perfcell = subset(state.pressure, well_cells); // Finally construct well perforation pressures and well flows. // Compute well pressure differentials. // Construct pressure difference vector for wells. const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const int dim = grid_.dimensions; const double* g = geo_.gravity(); if (g) { // Guard against gravity in anything but last dimension. for (int dd = 0; dd < dim - 1; ++dd) { assert(g[dd] == 0.0); } } // make a copy of the phaseConditions std::vector cond = phaseCondition_; ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern()); for (int phase = 0; phase < 3; ++phase) { if (active_[phase]) { const int pos = pu.phase_pos[phase]; const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, state.rv,cond, cells_); cell_rho_total += state.saturation[pos] * cell_rho; } } ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern()); assert(np == wells_.number_of_phases); const DataBlock compi = Eigen::Map(wells_.comp_frac, nw, np); for (int phase = 0; phase < 3; ++phase) { if (active_[phase]) { const int pos = pu.phase_pos[phase]; const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, state.rv,cond, cells_); const V fraction = compi.col(pos); inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells); } } const V rho_perf_cell = subset(cell_rho_total, well_cells).value(); const V rho_perf_well = inj_rho_total.value(); V prodperfs = V::Constant(nperf, -1.0); for (int w = 0; w < nw; ++w) { if (wells_.type[w] == PRODUCER) { std::fill(prodperfs.data() + wells_.well_connpos[w], prodperfs.data() + wells_.well_connpos[w+1], 1.0); } } const Selector producer(prodperfs); const V rho_perf = producer.select(rho_perf_cell, rho_perf_well); const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0); const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp; const ADB nkgradp_well = transw * (p_perfcell - p_perfwell); // DUMP(nkgradp_well); const Selector cell_to_well_selector(nkgradp_well.value()); ADB well_rates_all = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern()); ADB perf_total_mob = subset(rq_[0].mob, well_cells); for (int phase = 1; phase < np; ++phase) { perf_total_mob += subset(rq_[phase].mob, well_cells); } std::vector well_contribs(np, ADB::null()); std::vector well_perf_rates(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const ADB& cell_b = rq_[phase].b; const ADB perf_b = subset(cell_b, well_cells); const ADB& cell_mob = rq_[phase].mob; const V well_fraction = compi.col(phase); // Using total mobilities for all phases for injection. const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob; const ADB perf_mob = producer.select(subset(cell_mob, well_cells), perf_mob_injector); const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations. well_perf_rates[phase] = (perf_flux*perf_b); const ADB well_rates = wops_.p2w * well_perf_rates[phase]; well_rates_all += superset(well_rates, Span(nw, 1, phase*nw), nw*np); // const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc); well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc); // DUMP(well_contribs[phase]); residual_.mass_balance[phase] += well_contribs[phase]; } if (active_[Gas] && active_[Oil]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const ADB rs_perf = subset(state.rs, well_cells); const ADB rv_perf = subset(state.rv, well_cells); well_rates_all += superset(wops_.p2w * (well_perf_rates[oilpos]*rs_perf), Span(nw, 1, gaspos*nw), nw*np); well_rates_all += superset(wops_.p2w * (well_perf_rates[gaspos]*rv_perf), Span(nw, 1, oilpos*nw), nw*np); // DUMP(well_contribs[gaspos] + well_contribs[oilpos]*state.rs); residual_.mass_balance[gaspos] += well_contribs[oilpos]*state.rs; residual_.mass_balance[oilpos] += well_contribs[gaspos]*state.rv; } // Set the well flux equation residual_.well_flux_eq = state.qs + well_rates_all; // DUMP(residual_.well_flux_eq); // Handling BHP and SURFACE_RATE wells. V bhp_targets(nw); V rate_targets(nw); M rate_distr(nw, np*nw); for (int w = 0; w < nw; ++w) { const WellControls* wc = wells_.ctrls[w]; if (well_controls_get_current_type(wc) == BHP) { bhp_targets[w] = well_controls_get_current_target(wc); rate_targets[w] = -1e100; } else if (well_controls_get_current_type( wc ) == SURFACE_RATE) { bhp_targets[w] = -1e100; rate_targets[w] = well_controls_get_current_target(wc); { const double * distr = well_controls_get_current_distr( wc ); for (int phase = 0; phase < np; ++phase) { rate_distr.insert(w, phase*nw + w) = distr[phase]; } } } else { OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls."); } } const ADB bhp_residual = bhp - bhp_targets; const ADB rate_residual = rate_distr * state.qs - rate_targets; // Choose bhp residual for positive bhp targets. Selector bhp_selector(bhp_targets); residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual); // DUMP(residual_.well_eq); } V FullyImplicitBlackoilSolver::solveJacobianSystem() const { const int np = fluid_.numPhases(); ADB mass_res = residual_.mass_balance[0]; for (int phase = 1; phase < np; ++phase) { mass_res = vertcat(mass_res, residual_.mass_balance[phase]); } const ADB well_res = vertcat(residual_.well_flux_eq, residual_.well_eq); const ADB total_residual = collapseJacs(vertcat(mass_res, well_res)); // DUMP(total_residual); const Eigen::SparseMatrix matr = total_residual.derivative()[0]; V dx(V::Zero(total_residual.size())); Opm::LinearSolverInterface::LinearSolverReport rep = linsolver_.solve(matr.rows(), matr.nonZeros(), matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(), total_residual.value().data(), dx.data()); /* std::ofstream filestream("matrix.out"); filestream << matr; filestream.close(); std::ofstream filestream2("sol.out"); filestream2 << dx; filestream2.close(); std::ofstream filestream3("r.out"); filestream3 << total_residual.value(); filestream3.close(); */ if (!rep.converged) { OPM_THROW(std::runtime_error, "FullyImplicitBlackoilSolver::solveJacobianSystem(): " "Linear solver convergence failure."); } return dx; } namespace { struct Chop01 { double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); } }; } void FullyImplicitBlackoilSolver::updateState(const V& dx, BlackoilState& state, WellStateFullyImplicitBlackoil& well_state) { const int np = fluid_.numPhases(); const int nc = grid_.number_of_cells; const int nw = wells_.number_of_wells; const V null; assert(null.size() == 0); const V zero = V::Zero(nc); const V one = V::Constant(nc, 1.0); // store cell status in vectors V isRs = V::Zero(nc,1); V isRv = V::Zero(nc,1); V isSg = V::Zero(nc,1); bool disgas = false; bool vapoil = false; // this is a temporary hack to find if vapoil or disgas // is a active component. Should be given directly from // DISGAS and VAPOIL keywords in the deck. for (int c = 0; c0) vapoil = true; if(state.gasoilratio()[c]>0) disgas = true; } const std::vector conditions = phaseCondition(); for (int c = 0; c < nc; c++ ) { const PhasePresence cond = conditions[c]; if ( (!cond.hasFreeGas()) && disgas ) { isRs[c] = 1; } else if ( (!cond.hasFreeOil()) && vapoil ) { isRv[c] = 1; } else { isSg[c] = 1; } } // Extract parts of dx corresponding to each part. const V dp = subset(dx, Span(nc)); int varstart = nc; const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dsw.size(); const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null; varstart += dxvar.size(); const V dqs = subset(dx, Span(np*nw, 1, varstart)); varstart += dqs.size(); const V dbhp = subset(dx, Span(nw, 1, varstart)); varstart += dbhp.size(); assert(varstart == dx.size()); // Pressure update. const double dpmaxrel = 0.8; const V p_old = Eigen::Map(&state.pressure()[0], nc, 1); const V absdpmax = dpmaxrel*p_old.abs(); const V dp_limited = sign(dp) * dp.abs().min(absdpmax); const V p = (p_old - dp_limited).max(zero); std::copy(&p[0], &p[0] + nc, state.pressure().begin()); // Saturation updates. const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s_old = Eigen::Map(& state.saturation()[0], nc, np); const double dsmax = 0.3; V so = one; V sw; if (active_[ Water ]) { const int pos = pu.phase_pos[ Water ]; const V sw_old = s_old.col(pos); const V dsw_limited = sign(dsw) * dsw.abs().min(dsmax); sw = (sw_old - dsw_limited).unaryExpr(Chop01()); so -= sw; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = sw[c]; } } V sg; if (active_[Gas]) { const int pos = pu.phase_pos[ Gas ]; const V sg_old = s_old.col(pos); const V dsg = isSg * dxvar - isRv * dsw; const V dsg_limited = sign(dsg) * dsg.abs().min(dsmax); sg = sg_old - dsg_limited; so -= sg; } const double drsmax = 1e9; const double drvmax = 1e9;//% same as in Mrst V rs; if (disgas) { const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); const V drs = isRs * dxvar; const V drs_limited = sign(drs) * drs.abs().min(drsmax); rs = rs_old - drs_limited; } V rv; if (vapoil) { const V rv_old = Eigen::Map(&state.rv()[0], nc); const V drv = isRv * dxvar; const V drv_limited = sign(drv) * drv.abs().min(drvmax); rv = rv_old - drv_limited; } // Appleyard chop process. const double epsilon = std::sqrt(std::numeric_limits::epsilon()); auto watOnly = sw > (1 - epsilon); // phase translation sg <-> rs const V rsSat0 = fluidRsSat(p_old, cells_); const V rsSat = fluidRsSat(p, cells_); // reset the phase conditions std::vector cond(nc); if (disgas) { // The obvioious case auto ix0 = (sg > 0 && isRs == 0); // keep oil saturated if previous sg is sufficient large: const int pos = pu.phase_pos[ Gas ]; auto ix1 = (sg < 0 && s_old.col(pos) > epsilon); // Set oil saturated if previous rs is sufficiently large const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); auto ix2 = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) ); auto gasPresent = watOnly || ix0 || ix1 || ix2; for (int c = 0; c < nc; ++c) { if (gasPresent[c]) { rs[c] = rsSat[c]; cond[c].setFreeGas(); } } } // phase transitions so <-> rv const V rvSat0 = fluidRvSat(p_old, cells_); const V rvSat = fluidRvSat(p, cells_); if (vapoil) { // The obvious case auto ix0 = (so > 0 && isRv == 0); // keep oil saturated if previous sg is sufficient large: const int pos = pu.phase_pos[ Oil ]; auto ix1 = (so < 0 && s_old.col(pos) > epsilon ); // Set oil saturated if previous rs is sufficiently large const V rv_old = Eigen::Map(&state.rv()[0], nc); auto ix2 = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) ); auto oilPresent = watOnly || ix0 || ix1 || ix2; for (int c = 0; c < nc; ++c) { if (oilPresent[c]) { rv[c] = rvSat[c]; cond[c].setFreeOil(); } } } std::copy(&cond[0], &cond[0] + nc, phaseCondition_.begin()); auto ixg = sg < 0; for (int c = 0; c < nc; ++c) { if (ixg[c]) { sw[c] = sw[c] / (1-sg[c]); so[c] = so[c] / (1-sg[c]); sg[c] = 0; } } auto ixo = so < 0; for (int c = 0; c < nc; ++c) { if (ixo[c]) { sw[c] = sw[c] / (1-so[c]); sg[c] = sg[c] / (1-so[c]); so[c] = 0; } } auto ixw = sw < 0; for (int c = 0; c < nc; ++c) { if (ixw[c]) { so[c] = so[c] / (1-sw[c]); sg[c] = sg[c] / (1-so[c]); sw[c] = 0; } } // Update saturations for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c]; } for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c]; } if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = so[c]; } } // Rs and Rv updates if (disgas) std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin()); if (vapoil) std::copy(&rv[0], &rv[0] + nc, state.rv().begin()); // Qs update. // Since we need to update the wellrates, that are ordered by wells, // from dqs which are ordered by phase, the simplest is to compute // dwr, which is the data from dqs but ordered by wells. const DataBlock wwr = Eigen::Map(dqs.data(), np, nw).transpose(); const V dwr = Eigen::Map(wwr.data(), nw*np); const V wr_old = Eigen::Map(&well_state.wellRates()[0], nw*np); const V wr = wr_old - dwr; std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin()); // Bhp update. const V bhp_old = Eigen::Map(&well_state.bhp()[0], nw, 1); const V bhp = bhp_old - dbhp; std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin()); } std::vector FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state) const { const int nc = grid_.number_of_cells; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : null); const ADB so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : null); const ADB sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : null); return fluid_.relperm(sw, so, sg, cells_); } std::vector FullyImplicitBlackoilSolver::computePressures(const SolutionState& state) const { const int nc = grid_.number_of_cells; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : null); const ADB so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : null); const ADB sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : null); // convert the pressure offsets to the capillary pressures std::vector pressure = fluid_.capPress(sw, so, sg, cells_); for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) { #warning "what's the reference phase??" if (phaseIdx == BlackoilPhases::Liquid) continue; pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid]; } // add the total pressure to the capillary pressures for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) { pressure[phaseIdx] += state.pressure; } return pressure; } std::vector FullyImplicitBlackoilSolver::computeRelPermWells(const SolutionState& state, const DataBlock& well_s, const std::vector& well_cells) const { const int nw = wells_.number_of_wells; const int nperf = wells_.well_connpos[nw]; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nperf), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat) : null); const ADB so = (active_[ Oil ] ? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat) : null); const ADB sg = (active_[ Gas ] ? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat) : null); return fluid_.relperm(sw, so, sg, well_cells); } void FullyImplicitBlackoilSolver::computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& phasePressure, const SolutionState& state) { const int canonicalPhaseIdx = canph_[ actph ]; const std::vector cond = phaseCondition(); const ADB tr_mult = transMult(state.pressure); const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.rs, state.rv,cond, cells_); rq_[ actph ].mob = tr_mult * kr / mu; const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.rs, state.rv,cond, cells_); ADB& head = rq_[ actph ].head; // compute gravity potensial using the face average as in eclipse and MRST const ADB rhoavg = ops_.caver * rho; const ADB dp = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix())); head = transi*dp; //head = transi*(ops_.ngrad * phasePressure) + gflux; UpwindSelector upwind(grid_, ops_, head.value()); const ADB& b = rq_[ actph ].b; const ADB& mob = rq_[ actph ].mob; rq_[ actph ].mflux = upwind.select(b * mob) * head; // DUMP(rq_[ actph ].mob); // DUMP(rq_[ actph ].mflux); } double FullyImplicitBlackoilSolver::residualNorm() const { double r = 0; for (std::vector::const_iterator b = residual_.mass_balance.begin(), e = residual_.mass_balance.end(); b != e; ++b) { r = std::max(r, (*b).value().matrix().norm()); } r = std::max(r, residual_.well_flux_eq.value().matrix().norm()); r = std::max(r, residual_.well_eq.value().matrix().norm()); return r; } ADB FullyImplicitBlackoilSolver::fluidViscosity(const int phase, const ADB& p , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { switch (phase) { case Water: return fluid_.muWat(p, cells); case Oil: { return fluid_.muOil(p, rs, cond, cells); } case Gas: return fluid_.muGas(p, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } ADB FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase, const ADB& p , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { switch (phase) { case Water: return fluid_.bWat(p, cells); case Oil: { return fluid_.bOil(p, rs, cond, cells); } case Gas: return fluid_.bGas(p, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } ADB FullyImplicitBlackoilSolver::fluidDensity(const int phase, const ADB& p , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { const double* rhos = fluid_.surfaceDensity(); ADB b = fluidReciprocFVF(phase, p, rs, rv, cond, cells); ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b; if (phase == Oil && active_[Gas]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b; } if (phase == Gas && active_[Oil]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b; } return rho; } V FullyImplicitBlackoilSolver::fluidRsSat(const V& p, const std::vector& cells) const { return fluid_.rsSat(p, cells); } ADB FullyImplicitBlackoilSolver::fluidRsSat(const ADB& p, const std::vector& cells) const { return fluid_.rsSat(p, cells); } V FullyImplicitBlackoilSolver::fluidRvSat(const V& p, const std::vector& cells) const { return fluid_.rvSat(p, cells); } ADB FullyImplicitBlackoilSolver::fluidRvSat(const ADB& p, const std::vector& cells) const { return fluid_.rvSat(p, cells); } ADB FullyImplicitBlackoilSolver::poroMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V pm(n); V dpm(n); for (int i = 0; i < n; ++i) { pm[i] = rock_comp_props_->poroMult(p.value()[i]); dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]); } ADB::M dpm_diag = spdiag(dpm); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dpm_diag * p.derivative()[block]; } return ADB::function(pm, jacs); } else { return ADB::constant(V::Constant(n, 1.0), p.blockPattern()); } } ADB FullyImplicitBlackoilSolver::transMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V tm(n); V dtm(n); for (int i = 0; i < n; ++i) { tm[i] = rock_comp_props_->transMult(p.value()[i]); dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]); } ADB::M dtm_diag = spdiag(dtm); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dtm_diag * p.derivative()[block]; } return ADB::function(tm, jacs); } else { return ADB::constant(V::Constant(n, 1.0), p.blockPattern()); } } /* void FullyImplicitBlackoilSolver:: classifyCondition(const SolutionState& state, std::vector& cond ) const { const PhaseUsage& pu = fluid_.phaseUsage(); if (active_[ Gas ]) { // Oil/Gas or Water/Oil/Gas system const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; const V& so = state.saturation[ po ].value(); const V& sg = state.saturation[ pg ].value(); cond.resize(sg.size()); for (V::Index c = 0, e = sg.size(); c != e; ++c) { if (so[c] > 0) { cond[c].setFreeOil (); } if (sg[c] > 0) { cond[c].setFreeGas (); } if (active_[ Water ]) { cond[c].setFreeWater(); } } } else { // Water/Oil system assert (active_[ Water ]); const int po = pu.phase_pos[ Oil ]; const V& so = state.saturation[ po ].value(); cond.resize(so.size()); for (V::Index c = 0, e = so.size(); c != e; ++c) { cond[c].setFreeWater(); if (so[c] > 0) { cond[c].setFreeOil(); } } } } */ void FullyImplicitBlackoilSolver::classifyCondition(const BlackoilState& state) { const int nc = grid_.number_of_cells; const int np = state.numPhases(); const PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np); if (active_[ Gas ]) { // Oil/Gas or Water/Oil/Gas system const V so = s.col(pu.phase_pos[ Oil ]); const V sg = s.col(pu.phase_pos[ Gas ]); for (V::Index c = 0, e = sg.size(); c != e; ++c) { if (so[c] > 0) { phaseCondition_[c].setFreeOil (); } if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); } if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); } } } else { // Water/Oil system assert (active_[ Water ]); const V so = s.col(pu.phase_pos[ Oil ]); for (V::Index c = 0, e = so.size(); c != e; ++c) { phaseCondition_[c].setFreeWater(); if (so[c] > 0) { phaseCondition_[c].setFreeOil(); } } } } } // namespace Opm