/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
}}
namespace Opm {
namespace parameter { class ParameterGroup; }
class DerivedGeology;
class RockCompressibility;
class NewtonIterationBlackoilInterface;
class VFPProperties;
class SimulationDataContainer;
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
class BlackoilModelEbos
{
typedef BlackoilModelEbos ThisType;
public:
// --------- Types and enums ---------
typedef AutoDiffBlock ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
typedef DefaultBlackoilSolutionState SolutionState;
typedef typename TTAG(EclFlowProblem) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator ;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef double Scalar;
typedef Dune::FieldVector VectorBlockType;
typedef Dune::FieldMatrix MatrixBlockType;
typedef Dune::BCRSMatrix Mat;
typedef Dune::BlockVector BVector;
//typedef typename SolutionVector :: value_type PrimaryVariables ;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const StandardWellsDense& well_model,
const NewtonIterationBlackoilInterface& linsolver,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, grid_(ebosSimulator_.gridManager().grid())
, fluid_ (fluid)
, geo_ (geo)
, vfp_properties_(
eclState().getTableManager().getVFPInjTables(),
eclState().getTableManager().getVFPProdTables())
, linsolver_ (linsolver)
, active_(detail::activePhases(fluid.phaseUsage()))
, has_disgas_(FluidSystem::enableDissolvedGas())
, has_vapoil_(FluidSystem::enableVaporizedOil())
, param_( param )
, well_model_ (well_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, isBeginReportStep_(false)
, dx_old_(AutoDiffGrid::numCells(grid_))
{
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
const std::vector pv(geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
const std::vector depth(geo_.z().data(), geo_.z().data() + geo_.z().size());
well_model_.init(&fluid_, &active_, &vfp_properties_, gravity, depth, pv);
wellModel().setWellsActive( localWellsActive() );
global_nc_ = Opm::AutoDiffGrid::numCells(grid_);
}
const EclipseState& eclState() const
{ return *ebosSimulator_.gridManager().eclState(); }
/// Called once before each time step.
/// \param[in] timer simulation timer
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void prepareStep(const SimulatorTimerInterface& /*timer*/,
const ReservoirState& /*reservoir_state*/,
const WellState& /* well_state */)
{
}
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] timer simulation timer
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
template
IterationReport nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = 0.0;
}
IterationReport iter_report = assemble(timer, iteration, reservoir_state, well_state);
std::vector residual_norms;
const bool converged = getConvergence(timer, iteration,residual_norms);
residual_norms_history_.push_back(residual_norms);
const bool must_solve = (iteration < nonlinear_solver.minIter()) || (!converged);
Dune::InverseOperatorResult result;
if (must_solve) {
// enable single precision for solvers when dt is smaller then 20 days
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
// Compute the nonlinear update.
const int nc = AutoDiffGrid::numCells(grid_);
const int nw = wellModel().wells().number_of_wells;
BVector x(nc);
BVector xw(nw);
solveJacobianSystem(result, x, xw);
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
// Apply the update, applying model-dependent
// limitations and chopping of the update.
updateState(x,reservoir_state);
wellModel().updateWellState(xw, well_state);
}
const bool failed = false; // Not needed in this model.
const int linear_iters = must_solve ? result.iterations : 0;
return IterationReport{ failed, converged, linear_iters, iter_report.well_iterations };
}
void printIf(int c, double x, double y, double eps, std::string type) {
if (std::abs(x-y) > eps) {
std::cout << type << " " < p0 ( previous.pressure() );
std::vector< double > sat0( previous.saturation() );
const std::size_t pSize = p0.size();
const std::size_t satSize = sat0.size();
// compute u^n - u^n+1
for( std::size_t i=0; i 0.0 ) {
return stateOld / stateNew ;
}
else {
return 0.0;
}
}
/// The size (number of unknowns) of the nonlinear system of equations.
int sizeNonLinear() const
{
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int nw = wellModel().wells().number_of_wells;
return numPhases() * (nc + nw);
}
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const
{
return linsolver_.iterations();
}
template
void applyWellModel(const X& x, Y& y )
{
wellModel().apply(x, y);
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
void solveJacobianSystem(Dune::InverseOperatorResult& result, BVector& x, BVector& xw) const
{
typedef double Scalar;
typedef Dune::FieldVector VectorBlockType;
typedef Dune::FieldMatrix MatrixBlockType;
typedef Dune::BCRSMatrix Mat;
typedef Dune::BlockVector BVector;
const auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
typedef WellModelMatrixAdapter Operator;
Operator opA(ebosJac, const_cast< ThisType& > (*this));
const double relax = 0.9;
typedef Dune::SeqILU0 SeqPreconditioner;
SeqPreconditioner precond(opA.getmat(), relax);
Dune::SeqScalarProduct sp;
// apply well residual to the residual.
wellModel().apply(ebosResid);
Dune::BiCGSTABSolver linsolve(opA, sp, precond,
0.01,
100,
false);
// Solve system.
x = 0.0;
linsolve.apply(x, ebosResid, result);
// recover wells.
xw = 0.0;
wellModel().recoverVariable(x, xw);
}
//=====================================================================
// Implementation for ISTL-matrix based operator
//=====================================================================
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface
*/
template
class WellModelMatrixAdapter : public Dune::MatrixAdapter
{
typedef Dune::MatrixAdapter BaseType;
public:
//! export types
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
//! constructor: just store a reference to a matrix
explicit WellModelMatrixAdapter (const M& A, WellModel& wellMod ) : BaseType( A ), wellMod_( wellMod ) {}
//! apply operator to x: \f$ y = A(x) \f$
virtual void apply (const X& x, Y& y) const
{
BaseType::apply( x, y );
wellMod_.applyWellModel(x, y );
}
private:
WellModel& wellMod_;
};
/** @} end documentation */
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const BVector& dx,
ReservoirState& reservoir_state)
{
using namespace Opm::AutoDiffGrid;
const int np = fluid_.numPhases();
const int nc = numCells(grid_);
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
double dp = dx[cell_idx][flowPhaseToEbosCompIdx(0)];
reservoir_state.pressure()[cell_idx] -= dp;
// Saturation updates.
const double dsw = active_[Water] ? dx[cell_idx][flowPhaseToEbosCompIdx(1)] : 0.0;
const int xvar_ind = active_[Water] ? 2 : 1;
const double dxvar = active_[Gas] ? dx[cell_idx][flowPhaseToEbosCompIdx(xvar_ind)] : 0.0;
double dso = 0.0;
double dsg = 0.0;
double drs = 0.0;
double drv = 0.0;
double maxVal = 0.0;
// water phase
maxVal = std::max(std::abs(dsw),maxVal);
dso -= dsw;
// gas phase
switch (reservoir_state.hydroCarbonState()[cell_idx]) {
case HydroCarbonState::GasAndOil:
dsg = dxvar;
break;
case HydroCarbonState::OilOnly:
drs = dxvar;
break;
case HydroCarbonState::GasOnly:
dsg -= dsw;
drv = dxvar;
break;
default:
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << reservoir_state.hydroCarbonState()[cell_idx]);
}
dso -= dsg;
// Appleyard chop process.
maxVal = std::max(std::abs(dsg),maxVal);
double step = dsMax()/maxVal;
step = std::min(step, 1.0);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
if (active_[Water]) {
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
sw -= step * dsw;
}
if (active_[Gas]) {
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
sg -= step * dsg;
}
double& so = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Oil ]];
so -= step * dso;
// const double drmaxrel = drMaxRel();
// Update rs and rv
if (has_disgas_) {
double& rs = reservoir_state.gasoilratio()[cell_idx];
rs -= drs;
}
if (has_vapoil_) {
double& rv = reservoir_state.rv()[cell_idx];
rv -= drv;
}
// Sg is used as primal variable for water only cells.
const double epsilon = 1e-4; //std::sqrt(std::numeric_limits::epsilon());
// phase translation sg <-> rs
const HydroCarbonState hydroCarbonState = reservoir_state.hydroCarbonState()[cell_idx];
switch (hydroCarbonState) {
case HydroCarbonState::GasAndOil: {
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
if (sw > (1.0 - epsilon)) // water only i.e. do nothing
break;
if (sg <= 0.0 && has_disgas_) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::OilOnly; // sg --> rs
sg = 0;
so = 1.0 - sw - sg;
double rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(0, reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
double& rs = reservoir_state.gasoilratio()[cell_idx];
rs = rsSat*(1-epsilon);
} else if (so <= 0.0 && has_vapoil_) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasOnly; // sg --> rv
so = 0;
sg = 1.0 - sw - so;
double& rv = reservoir_state.rv()[cell_idx];
// use gas pressure?
double rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(0, reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
rv = rvSat*(1-epsilon);
}
break;
}
case HydroCarbonState::OilOnly: {
double& rs = reservoir_state.gasoilratio()[cell_idx];
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
// TODO:: not hardcode pvtRegion = 0
double rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(0, reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
if (rs > ( rsSat * (1+epsilon) ) ) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
sg = epsilon;
so -= epsilon;
rs = rsSat;
}
break;
}
case HydroCarbonState::GasOnly: {
double& rv = reservoir_state.rv()[cell_idx];
double rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(0, reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
if (rv > rvSat * (1+epsilon) ) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
so = epsilon;
rv = rvSat;
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
sg -= epsilon;
}
break;
}
default:
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << hydroCarbonState);
}
}
}
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const
{
return terminal_output_;
}
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] timer simulation timer
/// \param[in] dt timestep length
/// \param[in] iteration current iteration number
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector& residual_norms)
{
const double dt = timer.currentStepLength();
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_wells = param_.tolerance_wells_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = numPhases();
const V& pv = geo_.poreVolume();
std::vector R_sum(np);
std::vector B_avg(np);
std::vector maxCoeff(np);
std::vector maxNormWell(np);
Eigen::Array B(nc, np);
Eigen::Array R(nc, np);
Eigen::Array R2(nc, np);
Eigen::Array tempV(nc, np);
auto ebosResid = ebosSimulator_.model().linearizer().residual();
for ( int idx = 0; idx < np; ++idx )
{
V b(nc);
V r(nc);
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
int ebosCompIdx = flowPhaseToEbosCompIdx(idx);
b[cell_idx] = 1 / fs.invB(ebosPhaseIdx).value;
r[cell_idx] = ebosResid[cell_idx][ebosCompIdx];
}
R2.col(idx) = r;
B.col(idx) = b;
}
for ( int idx = 0; idx < np; ++idx )
{
tempV.col(idx) = R2.col(idx).abs()/pv;
}
std::vector pv_vector (geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
const double pvSum = detail::convergenceReduction(B, tempV, R2,
R_sum, maxCoeff, B_avg, maxNormWell,
nc, np, pv_vector, wellModel().residual());
std::vector CNV(np);
std::vector mass_balance_residual(np);
std::vector well_flux_residual(np);
bool converged_MB = true;
bool converged_CNV = true;
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
// Well flux convergence is only for fluid phases, not other materials
// in our current implementation.
assert(np >= np);
if (idx < np) {
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
residual_norms.push_back(CNV[idx]);
}
const bool converged = converged_MB && converged_CNV && converged_Well;
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " MB(" + phaseName + ") ";
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " CNV(" + phaseName + ") ";
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << mass_balance_residual[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << CNV[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << well_flux_residual[idx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(mass_balance_residual[phaseIdx])
|| std::isnan(CNV[phaseIdx])
|| (phaseIdx < np && std::isnan(well_flux_residual[phaseIdx]))) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (mass_balance_residual[phaseIdx] > maxResidualAllowed()
|| CNV[phaseIdx] > maxResidualAllowed()
|| (phaseIdx < np && well_flux_residual[phaseIdx] > maxResidualAllowed())) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
return converged;
}
/// The number of active fluid phases in the model.
int numPhases() const
{
return fluid_.numPhases();
}
protected:
// --------- Types and enums ---------
typedef Eigen::Array DataBlock;
// --------- Data members ---------
Simulator& ebosSimulator_;
const Grid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
VFPProperties vfp_properties_;
const NewtonIterationBlackoilInterface& linsolver_;
// For each canonical phase -> true if active
const std::vector active_;
// Size = # active phases. Maps active -> canonical phase indices.
const std::vector cells_; // All grid cells
const bool has_disgas_;
const bool has_vapoil_;
ModelParameters param_;
// Well Model
StandardWellsDense well_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
int global_nc_;
std::vector> residual_norms_history_;
double current_relaxation_;
BVector dx_old_;
// --------- Protected methods ---------
public:
/// return the StandardWells object
StandardWellsDense& wellModel() { return well_model_; }
const StandardWellsDense& wellModel() const { return well_model_; }
/// return the Well struct in the StandardWells
const Wells& wells() const { return well_model_.wells(); }
/// return true if wells are available in the reservoir
bool wellsActive() const { return well_model_.wellsActive(); }
/// return true if wells are available on this process
bool localWellsActive() const { return well_model_.localWellsActive(); }
void convertInput( const int iterationIdx,
const ReservoirState& reservoirState,
Simulator& simulator ) const
{
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
const Opm::PhaseUsage pu = fluid_.phaseUsage();
const int numCells = reservoirState.numCells();
const int numPhases = fluid_.numPhases();
const auto& oilPressure = reservoirState.pressure();
const auto& saturations = reservoirState.saturation();
const auto& rs = reservoirState.gasoilratio();
const auto& rv = reservoirState.rv();
for( int cellIdx = 0; cellIdx gas only with vaporized oil in the gas) is
// relatively expensive as it requires to compute the capillary
// pressure in order to get the gas phase pressure. (the reason why
// ebos uses the gas pressure here is that it makes the common case
// of the primary variable switching code fast because to determine
// whether the oil phase appears one needs to compute the Rv value
// for the saturated gas phase and if this is not available as a
// primary variable, it needs to be computed.) luckily for here, the
// gas-only case is not too common, so the performance impact of this
// is limited.
typedef Opm::SimpleModularFluidState SatOnlyFluidState;
SatOnlyFluidState fluidState;
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
}
else
{
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
}
}
if( iterationIdx == 0 )
{
simulator.model().solution( 1 /* timeIdx */ ) = solution;
}
}
public:
int ebosCompToFlowPhaseIdx( const int compIdx ) const
{
const int compToPhase[ 3 ] = { Oil, Water, Gas };
return compToPhase[ compIdx ];
}
int flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
return flowToEbos[ flowPv ];
}
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
return phaseToComp[ phaseIdx ];
}
private:
void convertResults(BVector& ebosResid, Mat& ebosJac) const
{
const int numPhases = wells().number_of_phases;
const int numCells = ebosJac.N();
assert( numCells == ebosJac.M());
// write the right-hand-side values from the ebosJac into the objects
// allocated above.
const auto endrow = ebosJac.end();
for( int cellIdx = 0; cellIdx < numCells; ++cellIdx )
{
const double cellVolume = ebosSimulator_.model().dofTotalVolume(cellIdx);
auto& cellRes = ebosResid[ cellIdx ];
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] /= refDens;
cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] *= cellVolume;
}
}
for( auto row = ebosJac.begin(); row != endrow; ++row )
{
const int rowIdx = row.index();
const double cellVolume = ebosSimulator_.model().dofTotalVolume(rowIdx);
// translate the Jacobian of the residual from the format used by ebos to
// the one expected by flow
const auto endcol = row->end();
for( auto col = row->begin(); col != endcol; ++col )
{
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
for( int pvIdx=0; pvIdx