/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
WellInterfaceFluidSystem::
WellInterfaceFluidSystem(const Well& well,
const ParallelWellInfo& parallel_well_info,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector>& perf_data)
: WellInterfaceGeneric(well, parallel_well_info, time_step, param,
pvtRegionIdx, num_components, num_phases,
index_of_well, perf_data)
, rateConverter_(rate_converter)
{
}
template
void
WellInterfaceFluidSystem::
calculateReservoirRates(const bool co2store, SingleWellState& ws) const
{
const int np = this->number_of_phases_;
const auto& pu = this->phaseUsage();
// Calculate reservoir rates from average pressure and temperature
if ( !(co2store || pu.has_energy) || this->wellEcl().isProducer()) {
const int fipreg = 0; // not considering the region for now
this->rateConverter_
.calcReservoirVoidageRates(fipreg,
this->pvtRegionIdx_,
ws.surface_rates,
ws.reservoir_rates);
// Compute total connection reservoir rate CVPR/CVIR
auto& perf_data = ws.perf_data;
const auto num_perf_well = perf_data.size();
const auto& surf_perf_rates = perf_data.phase_rates;
for (auto i = 0*num_perf_well; i < num_perf_well; ++i) {
const auto surface_rates_perf = std::vector
{ surf_perf_rates.begin() + (i + 0)*np ,
surf_perf_rates.begin() + (i + 1)*np };
std::vector voidage_rates_perf(np, 0.0);
this->rateConverter_
.calcReservoirVoidageRates(fipreg,
this->pvtRegionIdx_,
surface_rates_perf,
voidage_rates_perf);
perf_data.rates[i] =
std::accumulate(voidage_rates_perf.begin(),
voidage_rates_perf.end(), 0.0);
}
return;
}
// For injectors in a co2 storage case or a thermal case
// we convert using the well bhp and temperature
// Assume pure phases in the injector
const Scalar saltConc = 0.0;
Scalar rsMax = 0.0;
Scalar rvMax = 0.0;
Scalar rswMax = 0.0;
Scalar rvwMax = 0.0;
this->rateConverter_
.calcReservoirVoidageRates(this->pvtRegionIdx_,
ws.bhp,
rsMax,
rvMax,
rswMax,
rvwMax,
ws.temperature,
saltConc,
ws.surface_rates,
ws.reservoir_rates);
// Compute total connection reservoir rate CVIR
auto& perf_data = ws.perf_data;
const auto num_perf_well = perf_data.size();
const auto& surf_perf_rates = perf_data.phase_rates;
for (auto i = 0*num_perf_well; i < num_perf_well; ++i) {
const auto surface_rates_perf = std::vector
{ surf_perf_rates.begin() + (i + 0)*np ,
surf_perf_rates.begin() + (i + 1)*np };
const auto pressure = perf_data.pressure[i];
// Calculate other per-phase dynamic quantities.
const auto temperature = ws.temperature; // Assume same temperature in the well
std::vector voidage_rates_perf(np, 0.0);
this->rateConverter_
.calcReservoirVoidageRates(this->pvtRegionIdx_,
pressure,
rsMax,
rvMax,
rswMax, // Rsw
rvwMax, // Rvw
temperature,
saltConc,
surface_rates_perf,
voidage_rates_perf);
perf_data.rates[i] =
std::accumulate(voidage_rates_perf.begin(),
voidage_rates_perf.end(), 0.0);
}
}
template
bool
WellInterfaceFluidSystem::
checkIndividualConstraints(SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger,
const std::optional& inj_controls,
const std::optional& prod_controls) const
{
auto rRates = [this](const int fipreg,
const int pvtRegion,
const std::vector& surface_rates,
std::vector& voidage_rates)
{
return rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegion,
surface_rates, voidage_rates);
};
return WellConstraints(*this).
checkIndividualConstraints(ws, summaryState, rRates,
this->operability_status_.thp_limit_violated_but_not_switched,
deferred_logger, inj_controls, prod_controls);
}
template
bool
WellInterfaceFluidSystem::
checkGroupConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
if (!this->wellEcl().isAvailableForGroupControl())
return false;
auto rCoeff = [this, &group_state](const RegionId id,
const int region,
const std::optional& prod_gname,
std::vector& coeff)
{
if (prod_gname)
this->rateConverter().calcCoeff(id, region,
group_state.production_rates(*prod_gname), coeff);
else
this->rateConverter().calcInjCoeff(id, region, coeff);
};
return WellGroupConstraints(*this).checkGroupConstraints(well_state, group_state,
schedule, summaryState,
rCoeff, deferred_logger);
}
template
bool
WellInterfaceFluidSystem::
checkConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const bool ind_broken = checkIndividualConstraints(well_state.well(this->index_of_well_),
summaryState, deferred_logger);
if (ind_broken) {
return true;
} else {
return checkGroupConstraints(well_state, group_state, schedule,
summaryState, deferred_logger);
}
}
template
int
WellInterfaceFluidSystem::
flowPhaseToModelPhaseIdx(const int phaseIdx) const
{
const auto& pu = this->phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return FluidSystem::waterPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return FluidSystem::oilPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return FluidSystem::gasPhaseIdx;
// for other phases return the index
return phaseIdx;
}
template
std::optional::Scalar>
WellInterfaceFluidSystem::
getGroupInjectionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
Scalar efficiencyFactor,
DeferredLogger& deferred_logger) const
{
auto rCoeff = [this, &group_state](const RegionId id, const int region,
const std::optional& prod_gname,
std::vector& coeff)
{
if (prod_gname)
this->rateConverter().calcCoeff(id, region,
group_state.production_rates(*prod_gname), coeff);
else
this->rateConverter().calcInjCoeff(id, region, coeff);
};
return WellGroupControls(*this).getGroupInjectionTargetRate(group,
well_state,
group_state,
schedule,
summaryState,
injectorType,
rCoeff,
efficiencyFactor,
deferred_logger);
}
template
typename WellInterfaceFluidSystem::Scalar
WellInterfaceFluidSystem::
getGroupProductionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
Scalar efficiencyFactor,
DeferredLogger& deferred_logger) const
{
auto rCoeff = [this, &group_state](const RegionId id, const int region,
const std::optional& prod_gname,
std::vector& coeff)
{
if (prod_gname)
this->rateConverter().calcCoeff(id, region,
group_state.production_rates(*prod_gname), coeff);
else
this->rateConverter().calcInjCoeff(id, region, coeff);
};
return WellGroupControls(*this).getGroupProductionTargetRate(group,
well_state,
group_state,
schedule,
summaryState,
rCoeff,
efficiencyFactor,
deferred_logger);
}
template
bool
WellInterfaceFluidSystem::
zeroGroupRateTarget(const SummaryState& summary_state,
const Schedule& schedule,
const WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger) const
{
const auto& well = this->well_ecl_;
const auto& group = schedule.getGroup(well.groupName(), this->currentStep());
const Scalar efficiencyFactor = well.getEfficiencyFactor() *
well_state[well.name()].efficiency_scaling_factor;
if (this->isInjector()) {
// Check injector under group control
const auto& controls = well.injectionControls(summary_state);
const std::optional target =
this->getGroupInjectionTargetRate(group, well_state,
group_state, schedule,
summary_state, controls.injector_type,
efficiencyFactor, deferred_logger);
if (target.has_value()) {
return target.value() == 0.0;
} else {
return false;
}
} else {
// Check producer under group control
const Scalar scale =
this->getGroupProductionTargetRate(group, well_state,
group_state, schedule,
summary_state, efficiencyFactor,
deferred_logger);
return scale == 0.0;
}
}
template
using FS = BlackOilFluidSystem;
template class WellInterfaceFluidSystem>;
#if FLOW_INSTANTIATE_FLOAT
template class WellInterfaceFluidSystem>;
#endif
} // namespace Opm