// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * \copydoc Opm::EclOutputBlackOilModule */ #ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH #define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm::Properties { // create new type tag for the Ecl-output namespace TTag { struct EclOutputBlackOil {}; } template struct ForceDisableFluidInPlaceOutput { using type = UndefinedProperty; }; template struct ForceDisableFluidInPlaceOutput { static constexpr bool value = false; }; template struct ForceDisableResvFluidInPlaceOutput { using type = UndefinedProperty; }; template struct ForceDisableResvFluidInPlaceOutput { static constexpr bool value = false; }; } // namespace Opm::Properties namespace Opm { // forward declaration template class EcfvDiscretization; /*! * \ingroup EclBlackOilSimulator * * \brief Output module for the results black oil model writing in * ECL binary format. */ template class EclOutputBlackOilModule : public EclGenericOutputBlackoilModule, GetPropType> { using Simulator = GetPropType; using Discretization = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using ElementContext = GetPropType; using MaterialLaw = GetPropType; using MaterialLawParams = GetPropType; using FluidSystem = GetPropType; using GridView = GetPropType; using Element = typename GridView::template Codim<0>::Entity; using ElementIterator = typename GridView::template Codim<0>::Iterator; using BaseType = EclGenericOutputBlackoilModule; enum { numPhases = FluidSystem::numPhases }; enum { oilPhaseIdx = FluidSystem::oilPhaseIdx }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; enum { waterPhaseIdx = FluidSystem::waterPhaseIdx }; enum { gasCompIdx = FluidSystem::gasCompIdx }; enum { oilCompIdx = FluidSystem::oilCompIdx }; enum { enableEnergy = getPropValue() }; public: template EclOutputBlackOilModule(const Simulator& simulator, const std::vector& wbp_index_list, const CollectDataToIORankType& collectToIORank) : BaseType(simulator.vanguard().eclState(), simulator.vanguard().schedule(), simulator.vanguard().summaryConfig(), simulator.vanguard().summaryState(), getPropValue(), getPropValue(), getPropValue(), getPropValue(), getPropValue(), getPropValue(), getPropValue(), getPropValue(), getPropValue()) , simulator_(simulator) { for (auto& region_pair : this->regions_) { this->createLocalRegion_(region_pair.second); } for (const auto& node : this->simulator_.vanguard().summaryConfig()) { if ((node.category() == SummaryConfigNode::Category::Block) && collectToIORank.isCartIdxOnThisRank(node.number() - 1)) { this->blockData_.emplace(std::piecewise_construct, std::forward_as_tuple(node.keyword(), node.number()), std::forward_as_tuple(0.0)); } } for (const auto& global_index : wbp_index_list) { if (collectToIORank.isCartIdxOnThisRank(global_index - 1)) { this->wbpData_.emplace(global_index, 0.0); } } this->forceDisableFipOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput); this->forceDisableFipresvOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableResvFluidInPlaceOutput); } /*! * \brief Register all run-time parameters for the Vtk output module. */ static void registerParameters() { EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput, "Do not print fluid-in-place values after each report step even if requested by the deck."); EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableResvFluidInPlaceOutput, "Do not print reservoir volumes values after each report step even if requested by the deck."); } /*! * \brief Allocate memory for the scalar fields we would like to * write to ECL output files */ void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log, const bool isRestart) { if (!std::is_same >::value) return; this->doAllocBuffers(bufferSize, reportStepNum, substep, log, isRestart, simulator_.problem().vapparsActive(std::max(simulator_.episodeIndex(), 0)), simulator_.problem().materialLawManager()->enableHysteresis(), simulator_.problem().tracerModel().numTracers()); } /*! * \brief Modify the internal buffers according to the intensive quanties relevant * for an element */ void processElement(const ElementContext& elemCtx) { if (!std::is_same >::value) return; const auto& problem = elemCtx.simulator().problem(); for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) { const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); typedef typename std::remove_const::type>::type FluidState; unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0); unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex(); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (this->saturation_[phaseIdx].empty()) continue; this->saturation_[phaseIdx][globalDofIdx] = getValue(fs.saturation(phaseIdx)); Valgrind::CheckDefined(this->saturation_[phaseIdx][globalDofIdx]); } if (!this->oilPressure_.empty()) { if (FluidSystem::phaseIsActive(oilPhaseIdx)) { this->oilPressure_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx)); }else{ // put pressure in oil pressure for output if (FluidSystem::phaseIsActive(waterPhaseIdx)) { this->oilPressure_[globalDofIdx] = getValue(fs.pressure(waterPhaseIdx)); } else { this->oilPressure_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx)); } } Valgrind::CheckDefined(this->oilPressure_[globalDofIdx]); } if (!this->temperature_.empty()) { this->temperature_[globalDofIdx] = getValue(fs.temperature(oilPhaseIdx)); Valgrind::CheckDefined(this->temperature_[globalDofIdx]); } if (!this->gasDissolutionFactor_.empty()) { Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx); this->gasDissolutionFactor_[globalDofIdx] = FluidSystem::template saturatedDissolutionFactor(fs, oilPhaseIdx, pvtRegionIdx, SoMax); Valgrind::CheckDefined(this->gasDissolutionFactor_[globalDofIdx]); } if (!this->oilVaporizationFactor_.empty()) { Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx); this->oilVaporizationFactor_[globalDofIdx] = FluidSystem::template saturatedDissolutionFactor(fs, gasPhaseIdx, pvtRegionIdx, SoMax); Valgrind::CheckDefined(this->oilVaporizationFactor_[globalDofIdx]); } if (!this->gasFormationVolumeFactor_.empty()) { this->gasFormationVolumeFactor_[globalDofIdx] = 1.0/FluidSystem::template inverseFormationVolumeFactor(fs, gasPhaseIdx, pvtRegionIdx); Valgrind::CheckDefined(this->gasFormationVolumeFactor_[globalDofIdx]); } if (!this->saturatedOilFormationVolumeFactor_.empty()) { this->saturatedOilFormationVolumeFactor_[globalDofIdx] = 1.0/FluidSystem::template saturatedInverseFormationVolumeFactor(fs, oilPhaseIdx, pvtRegionIdx); Valgrind::CheckDefined(this->saturatedOilFormationVolumeFactor_[globalDofIdx]); } if (!this->oilSaturationPressure_.empty()) { this->oilSaturationPressure_[globalDofIdx] = FluidSystem::template saturationPressure(fs, oilPhaseIdx, pvtRegionIdx); Valgrind::CheckDefined(this->oilSaturationPressure_[globalDofIdx]); } if (!this->rs_.empty()) { this->rs_[globalDofIdx] = getValue(fs.Rs()); Valgrind::CheckDefined(this->rs_[globalDofIdx]); } if (!this->rv_.empty()) { this->rv_[globalDofIdx] = getValue(fs.Rv()); Valgrind::CheckDefined(this->rv_[globalDofIdx]); } if (!this->pcow_.empty()) { this->pcow_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx)) - getValue(fs.pressure(waterPhaseIdx)); Valgrind::CheckDefined(this->pcow_[globalDofIdx]); } if (!this->pcog_.empty()) { this->pcog_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx)) - getValue(fs.pressure(oilPhaseIdx)); Valgrind::CheckDefined(this->pcog_[globalDofIdx]); } if (!this->rvw_.empty()) { this->rvw_[globalDofIdx] = getValue(fs.Rvw()); Valgrind::CheckDefined(this->rvw_[globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (this->invB_[phaseIdx].empty()) continue; this->invB_[phaseIdx][globalDofIdx] = getValue(fs.invB(phaseIdx)); Valgrind::CheckDefined(this->invB_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (this->density_[phaseIdx].empty()) continue; this->density_[phaseIdx][globalDofIdx] = getValue(fs.density(phaseIdx)); Valgrind::CheckDefined(this->density_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (this->viscosity_[phaseIdx].empty()) continue; if (!this->extboX_.empty() && phaseIdx==oilPhaseIdx) this->viscosity_[phaseIdx][globalDofIdx] = getValue(intQuants.oilViscosity()); else if (!this->extboX_.empty() && phaseIdx==gasPhaseIdx) this->viscosity_[phaseIdx][globalDofIdx] = getValue(intQuants.gasViscosity()); else this->viscosity_[phaseIdx][globalDofIdx] = getValue(fs.viscosity(phaseIdx)); Valgrind::CheckDefined(this->viscosity_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (this->relativePermeability_[phaseIdx].empty()) continue; this->relativePermeability_[phaseIdx][globalDofIdx] = getValue(intQuants.relativePermeability(phaseIdx)); Valgrind::CheckDefined(this->relativePermeability_[phaseIdx][globalDofIdx]); } if (!this->sSol_.empty()) { this->sSol_[globalDofIdx] = intQuants.solventSaturation().value(); } if (!this->cPolymer_.empty()) { this->cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value(); } if (!this->cFoam_.empty()) { this->cFoam_[globalDofIdx] = intQuants.foamConcentration().value(); } if (!this->cSalt_.empty()) { this->cSalt_[globalDofIdx] = fs.saltConcentration().value(); } if (!this->pSalt_.empty()) { this->pSalt_[globalDofIdx] = intQuants.saltSaturation().value(); } if (!this->permFact_.empty()) { this->permFact_[globalDofIdx] = intQuants.permFactor().value(); } if (!this->extboX_.empty()) { this->extboX_[globalDofIdx] = intQuants.xVolume().value(); } if (!this->extboY_.empty()) { this->extboY_[globalDofIdx] = intQuants.yVolume().value(); } if (!this->extboZ_.empty()) { this->extboZ_[globalDofIdx] = intQuants.zFraction().value(); } if (!this->mFracCo2_.empty()) { const Scalar stdVolOil = getValue(fs.saturation(oilPhaseIdx))*getValue(fs.invB(oilPhaseIdx)) + getValue(fs.saturation(gasPhaseIdx))*getValue(fs.invB(gasPhaseIdx))*getValue(fs.Rv()); const Scalar stdVolGas = getValue(fs.saturation(gasPhaseIdx))*getValue(fs.invB(gasPhaseIdx))*(1.0-intQuants.yVolume().value()) + getValue(fs.saturation(oilPhaseIdx))*getValue(fs.invB(oilPhaseIdx))*getValue(fs.Rs())*(1.0-intQuants.xVolume().value()); const Scalar stdVolCo2 = getValue(fs.saturation(gasPhaseIdx))*getValue(fs.invB(gasPhaseIdx))*intQuants.yVolume().value() + getValue(fs.saturation(oilPhaseIdx))*getValue(fs.invB(oilPhaseIdx))*getValue(fs.Rs())*intQuants.xVolume().value(); const Scalar rhoO= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx); const Scalar rhoG= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx); const Scalar rhoCO2= intQuants.zRefDensity(); const Scalar stdMassTotal= 1.0e-10 + stdVolOil*rhoO + stdVolGas*rhoG + stdVolCo2*rhoCO2; this->mFracOil_[globalDofIdx] = stdVolOil*rhoO/stdMassTotal; this->mFracGas_[globalDofIdx] = stdVolGas*rhoG/stdMassTotal; this->mFracCo2_[globalDofIdx] = stdVolCo2*rhoCO2/stdMassTotal; } if (!this->cMicrobes_.empty()) { this->cMicrobes_[globalDofIdx] = intQuants.microbialConcentration().value(); } if (!this->cOxygen_.empty()) { this->cOxygen_[globalDofIdx] = intQuants.oxygenConcentration().value(); } if (!this->cUrea_.empty()) { this->cUrea_[globalDofIdx] = 10 * intQuants.ureaConcentration().value(); //Reescaling back the urea concentration (see WellInterface_impl.hpp) } if (!this->cBiofilm_.empty()) { this->cBiofilm_[globalDofIdx] = intQuants.biofilmConcentration().value(); } if (!this->cCalcite_.empty()) { this->cCalcite_[globalDofIdx] = intQuants.calciteConcentration().value(); } if (!this->bubblePointPressure_.empty()) { try { this->bubblePointPressure_[globalDofIdx] = getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex())); } catch (const NumericalIssue&) { const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; this->failedCellsPb_.push_back(cartesianIdx); } } if (!this->dewPointPressure_.empty()) { try { this->dewPointPressure_[globalDofIdx] = getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex())); } catch (const NumericalIssue&) { const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; this->failedCellsPd_.push_back(cartesianIdx); } } if (!this->soMax_.empty()) this->soMax_[globalDofIdx] = std::max(getValue(fs.saturation(oilPhaseIdx)), problem.maxOilSaturation(globalDofIdx)); if (!this->swMax_.empty()) this->swMax_[globalDofIdx] = std::max(getValue(fs.saturation(waterPhaseIdx)), problem.maxWaterSaturation(globalDofIdx)); if (!this->minimumOilPressure_.empty()) this->minimumOilPressure_[globalDofIdx] = std::min(getValue(fs.pressure(oilPhaseIdx)), problem.minOilPressure(globalDofIdx)); if (!this->overburdenPressure_.empty()) this->overburdenPressure_[globalDofIdx] = problem.overburdenPressure(globalDofIdx); if (!this->rockCompPorvMultiplier_.empty()) this->rockCompPorvMultiplier_[globalDofIdx] = problem.template rockCompPoroMultiplier(intQuants, globalDofIdx); if (!this->rockCompTransMultiplier_.empty()) this->rockCompTransMultiplier_[globalDofIdx] = problem.template rockCompTransMultiplier(intQuants, globalDofIdx); const auto& matLawManager = problem.materialLawManager(); if (matLawManager->enableHysteresis()) { if (!this->pcSwMdcOw_.empty() && !this->krnSwMdcOw_.empty()) { matLawManager->oilWaterHysteresisParams( this->pcSwMdcOw_[globalDofIdx], this->krnSwMdcOw_[globalDofIdx], globalDofIdx); } if (!this->pcSwMdcGo_.empty() && !this->krnSwMdcGo_.empty()) { matLawManager->gasOilHysteresisParams( this->pcSwMdcGo_[globalDofIdx], this->krnSwMdcGo_[globalDofIdx], globalDofIdx); } } if (!this->ppcw_.empty()) { this->ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow; //printf("ppcw_[%d] = %lg\n", globalDofIdx, ppcw_[globalDofIdx]); } // hack to make the intial output of rs and rv Ecl compatible. // For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step // where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite // rs and rv with the values computed in the initially. // Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values. // This can be removed when ebos has 100% controll over output if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) { const auto& fsInitial = problem.initialFluidState(globalDofIdx); // use initial rs and rv values if (!this->rv_.empty()) this->rv_[globalDofIdx] = fsInitial.Rv(); if (!this->rs_.empty()) this->rs_[globalDofIdx] = fsInitial.Rs(); if (!this->rvw_.empty()) this->rvw_[globalDofIdx] = fsInitial.Rvw(); // re-compute the volume factors, viscosities and densities if asked for if (!this->density_[oilPhaseIdx].empty()) this->density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (!this->density_[gasPhaseIdx].empty()) this->density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); if (!this->invB_[oilPhaseIdx].empty()) this->invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (!this->invB_[gasPhaseIdx].empty()) this->invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); if (!this->viscosity_[oilPhaseIdx].empty()) this->viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (!this->viscosity_[gasPhaseIdx].empty()) this->viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); } // Add fluid in Place values updateFluidInPlace_(elemCtx, dofIdx); // Adding block data const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; for (auto& val : this->blockData_) { const auto& key = val.first; int cartesianIdxBlock = key.second - 1; if (cartesianIdx == cartesianIdxBlock) { if ((key.first == "BWSAT") || (key.first == "BSWAT")) val.second = getValue(fs.saturation(waterPhaseIdx)); else if ((key.first == "BGSAT") || (key.first == "BSGAS")) val.second = getValue(fs.saturation(gasPhaseIdx)); else if ((key.first == "BOSAT") || (key.first == "BSOIL")) val.second = getValue(fs.saturation(oilPhaseIdx)); else if (key.first == "BNSAT") val.second = intQuants.solventSaturation().value(); else if ((key.first == "BPR") || (key.first == "BPRESSUR")){ if (FluidSystem::phaseIsActive(oilPhaseIdx)) val.second = getValue(fs.pressure(oilPhaseIdx)); else if (FluidSystem::phaseIsActive(gasPhaseIdx)) val.second = getValue(fs.pressure(gasPhaseIdx)); else if (FluidSystem::phaseIsActive(waterPhaseIdx)) val.second = getValue(fs.pressure(waterPhaseIdx)); } else if ((key.first == "BTCNFHEA") || (key.first == "BTEMP")){ if (FluidSystem::phaseIsActive(oilPhaseIdx)) val.second = getValue(fs.temperature(oilPhaseIdx)); else if (FluidSystem::phaseIsActive(gasPhaseIdx)) val.second = getValue(fs.temperature(gasPhaseIdx)); else if (FluidSystem::phaseIsActive(waterPhaseIdx)) val.second = getValue(fs.temperature(waterPhaseIdx)); } else if (key.first == "BWKR" || key.first == "BKRW") val.second = getValue(intQuants.relativePermeability(waterPhaseIdx)); else if (key.first == "BGKR" || key.first == "BKRG") val.second = getValue(intQuants.relativePermeability(gasPhaseIdx)); else if (key.first == "BOKR" || key.first == "BKRO") val.second = getValue(intQuants.relativePermeability(oilPhaseIdx)); else if (key.first == "BKROG") { const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, /* timeIdx = */ 0); const auto krog = MaterialLaw::template relpermOilInOilGasSystem(materialParams, fs); val.second = getValue(krog); } else if (key.first == "BKROW") { const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, /* timeIdx = */ 0); const auto krow = MaterialLaw::template relpermOilInOilWaterSystem(materialParams, fs); val.second = getValue(krow); } else if (key.first == "BWPC") val.second = getValue(fs.pressure(oilPhaseIdx)) - getValue(fs.pressure(waterPhaseIdx)); else if (key.first == "BGPC") val.second = getValue(fs.pressure(gasPhaseIdx)) - getValue(fs.pressure(oilPhaseIdx)); else if (key.first == "BWPR") val.second = getValue(fs.pressure(waterPhaseIdx)); else if (key.first == "BGPR") val.second = getValue(fs.pressure(gasPhaseIdx)); else if (key.first == "BVWAT" || key.first == "BWVIS") val.second = getValue(fs.viscosity(waterPhaseIdx)); else if (key.first == "BVGAS" || key.first == "BGVIS") val.second = getValue(fs.viscosity(gasPhaseIdx)); else if (key.first == "BVOIL" || key.first == "BOVIS") val.second = getValue(fs.viscosity(oilPhaseIdx)); else if ((key.first == "BRPV") || (key.first == "BOPV") || (key.first == "BWPV") || (key.first == "BGPV")) { if (key.first == "BRPV") { val.second = 1.0; } else if (key.first == "BOPV") { val.second = getValue(fs.saturation(oilPhaseIdx)); } else if (key.first == "BWPV") { val.second = getValue(fs.saturation(waterPhaseIdx)); } else { val.second = getValue(fs.saturation(gasPhaseIdx)); } // Include active pore-volume. val.second *= elemCtx.simulator().model().dofTotalVolume(globalDofIdx) * getValue(intQuants.porosity()); } else if (key.first == "BRS") val.second = getValue(fs.Rs()); else if (key.first == "BRV") val.second = getValue(fs.Rv()); else if ((key.first == "BOIP") || (key.first == "BOIPL") || (key.first == "BOIPG") || (key.first == "BGIP") || (key.first == "BGIPL") || (key.first == "BGIPG") || (key.first == "BWIP")) { if ((key.first == "BOIP") || (key.first == "BOIPL")) { val.second = getValue(fs.invB(oilPhaseIdx)) * getValue(fs.saturation(oilPhaseIdx)); if (key.first == "BOIP") { val.second += getValue(fs.Rv()) * getValue(fs.invB(gasPhaseIdx)) * getValue(fs.saturation(gasPhaseIdx)); } } else if (key.first == "BOIPG") { val.second = getValue(fs.Rv()) * getValue(fs.invB(gasPhaseIdx)) * getValue(fs.saturation(gasPhaseIdx)); } else if ((key.first == "BGIP") || (key.first == "BGIPG")) { val.second = getValue(fs.invB(gasPhaseIdx)) * getValue(fs.saturation(gasPhaseIdx)); if (key.first == "BGIP") { val.second += getValue(fs.Rs()) * getValue(fs.invB(oilPhaseIdx)) * getValue(fs.saturation(oilPhaseIdx)); } } else if (key.first == "BGIPL") { val.second = getValue(fs.Rs()) * getValue(fs.invB(oilPhaseIdx)) * getValue(fs.saturation(oilPhaseIdx)); } else { // BWIP val.second = getValue(fs.invB(waterPhaseIdx)) * getValue(fs.saturation(waterPhaseIdx)); } // Include active pore-volume. val.second *= elemCtx.simulator().model().dofTotalVolume(globalDofIdx) * getValue(intQuants.porosity()); } else { std::string logstring = "Keyword '"; logstring.append(key.first); logstring.append("' is unhandled for output to file."); OpmLog::warning("Unhandled output keyword", logstring); } } } // Adding Well RFT data if (this->oilConnectionPressures_.count(cartesianIdx) > 0) { this->oilConnectionPressures_[cartesianIdx] = getValue(fs.pressure(oilPhaseIdx)); } if (this->waterConnectionSaturations_.count(cartesianIdx) > 0) { this->waterConnectionSaturations_[cartesianIdx] = getValue(fs.saturation(waterPhaseIdx)); } if (this->gasConnectionSaturations_.count(cartesianIdx) > 0) { this->gasConnectionSaturations_[cartesianIdx] = getValue(fs.saturation(gasPhaseIdx)); } if (this->wbpData_.count(cartesianIdx) > 0) this->wbpData_[cartesianIdx] = getValue(fs.pressure(oilPhaseIdx)); // tracers const auto& tracerModel = simulator_.problem().tracerModel(); if (!this->tracerConcentrations_.empty()) { for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){ if (this->tracerConcentrations_[tracerIdx].empty()) continue; this->tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx); } } } } /*! * \brief Capture connection fluxes, particularly to account for inter-region flows. * * \tparam ActiveIndex Callable type, typically a lambda, that enables * retrieving the active index, on the local MPI rank, of a * particular cell/element. Must support a function call operator of * the form \code int operator()(const Element& elem) const \endcode * * \tparam CartesianIndex Callable type, typically a lambda, that * enables retrieving the globally unique Cartesian index of a * particular cell/element given its active index on the local MPI * rank. Must support a function call operator of the form \code int operator()(const int activeIndex) const \endcode * * \param[in] elemCtx Primary lookup structure for per-cell/element * dynamic information. * * \param[in] activeIndex Mapping from cell/elements to linear indices * on local MPI rank. * * \param[in] cartesianIndex Mapping from active index on local MPI rank * to globally unique Cartesian cell/element index. */ template void processFluxes(const ElementContext& elemCtx, ActiveIndex&& activeIndex, CartesianIndex&& cartesianIndex) { const auto identifyCell = [&activeIndex, &cartesianIndex](const Element& elem) -> EclInterRegFlowMap::Cell { const auto cellIndex = activeIndex(elem); return { cellIndex, cartesianIndex(cellIndex), elem.partitionType() == Dune::InteriorEntity }; }; const auto timeIdx = 0u; const auto& stencil = elemCtx.stencil(timeIdx); const auto numInteriorFaces = elemCtx.numInteriorFaces(timeIdx); for (auto scvfIdx = 0*numInteriorFaces; scvfIdx < numInteriorFaces; ++scvfIdx) { const auto& face = stencil.interiorFace(scvfIdx); const auto left = identifyCell(stencil.element(face.interiorIndex())); const auto right = identifyCell(stencil.element(face.exteriorIndex())); const auto rates = this-> getComponentSurfaceRates(elemCtx, face.area(), scvfIdx, timeIdx); this->interRegionFlows_.addConnection(left, right, rates); } } /*! * \brief Prepare for capturing connection fluxes, particularly to * account for inter-region flows. */ void initializeFluxData() { // Inter-region flow rates. Note: ".clear()" prepares to accumulate // contributions per bulk connection between FIP regions. this->interRegionFlows_.clear(); } /*! * \brief Finalize capturing connection fluxes. */ void finalizeFluxData() { this->interRegionFlows_.compress(); } /*! * \brief Get read-only access to collection of inter-region flows. */ const EclInterRegFlowMap& getInterRegFlows() const { return this->interRegionFlows_; } template void assignToFluidState(FluidState& fs, unsigned elemIdx) const { for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (this->saturation_[phaseIdx].empty()) continue; fs.setSaturation(phaseIdx, this->saturation_[phaseIdx][elemIdx]); } if (!this->oilPressure_.empty()) { // this assumes that capillary pressures only depend on the phase saturations // and possibly on temperature. (this is always the case for ECL problems.) Dune::FieldVector< Scalar, numPhases > pc(0); const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx); MaterialLaw::capillaryPressures(pc, matParams, fs); Valgrind::CheckDefined(this->oilPressure_[elemIdx]); Valgrind::CheckDefined(pc); assert(FluidSystem::phaseIsActive(oilPhaseIdx)); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; fs.setPressure(phaseIdx, this->oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx])); } } if (!this->temperature_.empty()) fs.setTemperature(this->temperature_[elemIdx]); if (!this->rs_.empty()) fs.setRs(this->rs_[elemIdx]); if (!this->rv_.empty()) fs.setRv(this->rv_[elemIdx]); if (!this->rvw_.empty()) fs.setRvw(this->rvw_[elemIdx]); } void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const { if (!this->soMax_.empty()) simulator.problem().setMaxOilSaturation(elemIdx, this->soMax_[elemIdx]); if (simulator.problem().materialLawManager()->enableHysteresis()) { auto matLawManager = simulator.problem().materialLawManager(); if (!this->pcSwMdcOw_.empty() && !this->krnSwMdcOw_.empty()) { matLawManager->setOilWaterHysteresisParams( this->pcSwMdcOw_[elemIdx], this->krnSwMdcOw_[elemIdx], elemIdx); } if (!this->pcSwMdcGo_.empty() && !this->krnSwMdcGo_.empty()) { matLawManager->setGasOilHysteresisParams( this->pcSwMdcGo_[elemIdx], this->krnSwMdcGo_[elemIdx], elemIdx); } } if (simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT")) { const auto& oilWaterScaledEpsInfoDrainage = simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainage(elemIdx); const_cast&>(oilWaterScaledEpsInfoDrainage).maxPcow = this->ppcw_[elemIdx]; } } private: bool isDefunctParallelWell(std::string wname) const override { if (simulator_.gridView().comm().size()==1) return false; const auto& parallelWells = simulator_.vanguard().parallelWells(); std::pair value{wname, true}; auto candidate = std::lower_bound(parallelWells.begin(), parallelWells.end(), value); return candidate == parallelWells.end() || *candidate != value; } void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx) { const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0); // Fluid in Place calculations // calculate the pore volume of the current cell. Note that the porosity // returned by the intensive quantities is defined as the ratio of pore // space to total cell volume and includes all pressure dependent (-> // rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG, // PORV, MINPV and friends). Also note that because of this, the porosity // returned by the intensive quantities can be outside of the physical // range [0, 1] in pathetic cases. const auto totVolume = elemCtx.simulator().model().dofTotalVolume(globalDofIdx); const double pv = totVolume * intQuants.porosity().value(); if (!this->pressureTimesHydrocarbonVolume_.empty() && !this->pressureTimesPoreVolume_.empty()) { assert(this->hydrocarbonPoreVolume_.size() == this->pressureTimesHydrocarbonVolume_.size()); assert(this->fip_[Inplace::Phase::PoreVolume].size() == this->pressureTimesPoreVolume_.size()); this->fip_[Inplace::Phase::PoreVolume][globalDofIdx] = totVolume * intQuants.referencePorosity(); this->dynamicPoreVolume_[globalDofIdx] = pv; Scalar hydrocarbon = 0.0; if (FluidSystem::phaseIsActive(oilPhaseIdx)) hydrocarbon += getValue(fs.saturation(oilPhaseIdx)); if (FluidSystem::phaseIsActive(gasPhaseIdx)) hydrocarbon += getValue(fs.saturation(gasPhaseIdx)); this->hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon; if (FluidSystem::phaseIsActive(oilPhaseIdx)) { this->pressureTimesPoreVolume_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx)) * pv; this->pressureTimesHydrocarbonVolume_[globalDofIdx] = this->pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon; } else if (FluidSystem::phaseIsActive(gasPhaseIdx)) { this->pressureTimesPoreVolume_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx)) * pv; this->pressureTimesHydrocarbonVolume_[globalDofIdx] = this->pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon; } else if (FluidSystem::phaseIsActive(waterPhaseIdx)) { this->pressureTimesPoreVolume_[globalDofIdx] = getValue(fs.pressure(waterPhaseIdx)) * pv; } } if (this->computeFip_) { Scalar fip[FluidSystem::numPhases]; Scalar fipr[FluidSystem::numPhases]; // at reservoir condition for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { fip[phaseIdx] = 0.0; if (!FluidSystem::phaseIsActive(phaseIdx)) continue; const double b = getValue(fs.invB(phaseIdx)); const double s = getValue(fs.saturation(phaseIdx)); fipr[phaseIdx] = s * pv; fip[phaseIdx] = b * fipr[phaseIdx]; } if (FluidSystem::phaseIsActive(oilPhaseIdx) && !this->fip_[Inplace::Phase::OIL].empty()) this->fip_[Inplace::Phase::OIL][globalDofIdx] = fip[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && !this->fip_[Inplace::Phase::GAS].empty()) this->fip_[Inplace::Phase::GAS][globalDofIdx] = fip[gasPhaseIdx]; if (FluidSystem::phaseIsActive(waterPhaseIdx) && !this->fip_[Inplace::Phase::WATER].empty()) this->fip_[Inplace::Phase::WATER][globalDofIdx] = fip[waterPhaseIdx]; if (FluidSystem::phaseIsActive(oilPhaseIdx) && !this->fip_[Inplace::Phase::OilResVolume].empty()) this->fip_[Inplace::Phase::OilResVolume][globalDofIdx] = fipr[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && !this->fip_[Inplace::Phase::GasResVolume].empty()) this->fip_[Inplace::Phase::GasResVolume][globalDofIdx] = fipr[gasPhaseIdx]; if (FluidSystem::phaseIsActive(waterPhaseIdx) && !this->fip_[Inplace::Phase::WaterResVolume].empty()) this->fip_[Inplace::Phase::WaterResVolume][globalDofIdx] = fipr[waterPhaseIdx]; if (FluidSystem::phaseIsActive(waterPhaseIdx) && !this->fip_[Inplace::Phase::SALT].empty()) this->fip_[Inplace::Phase::SALT][globalDofIdx] = fipr[waterPhaseIdx] * fs.saltConcentration().value(); // Store the pure oil and gas Fip if (FluidSystem::phaseIsActive(oilPhaseIdx) && !this->fip_[Inplace::Phase::OilInLiquidPhase].empty()) this->fip_[Inplace::Phase::OilInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && !this->fip_[Inplace::Phase::GasInGasPhase].empty()) this->fip_[Inplace::Phase::GasInGasPhase][globalDofIdx] = fip[gasPhaseIdx]; if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) { // Gas dissolved in oil and vaporized oil Scalar gasInPlaceLiquid = getValue(fs.Rs()) * fip[oilPhaseIdx]; Scalar oilInPlaceGas = getValue(fs.Rv()) * fip[gasPhaseIdx]; if (!this->fip_[Inplace::Phase::GasInLiquidPhase].empty()) this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceLiquid; if (!this->fip_[Inplace::Phase::OilInGasPhase].empty()) this->fip_[Inplace::Phase::OilInGasPhase][globalDofIdx] = oilInPlaceGas; // Add dissolved gas and vaporized oil to total Fip if (!this->fip_[Inplace::Phase::OIL].empty()) this->fip_[Inplace::Phase::OIL][globalDofIdx] += oilInPlaceGas; if (!this->fip_[Inplace::Phase::GAS].empty()) this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceLiquid; } } } void createLocalRegion_(std::vector& region) { ElementContext elemCtx(simulator_); ElementIterator elemIt = simulator_.gridView().template begin(); const ElementIterator& elemEndIt = simulator_.gridView().template end(); size_t elemIdx = 0; for (; elemIt != elemEndIt; ++elemIt, ++elemIdx) { const Element& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) region[elemIdx] = 0; } } /*! * \brief Compute surface level component flow rates across a single * intersection. * * \param[in] elemCtx Primary lookup structure for per-cell/element * dynamic information. * * \param[in] scvfIdx Linear index of current interior bulk connection. * * \param[in] timeIdx Historical time-point at which to evaluate dynamic * quantities (e.g., reciprocal FVF or dissolved gas concentration). * Zero for the current time. * * \return Surface level component flow rates. */ data::InterRegFlowMap::FlowRates getComponentSurfaceRates(const ElementContext& elemCtx, const Scalar faceArea, const std::size_t scvfIdx, const std::size_t timeIdx) const { using Component = data::InterRegFlowMap::Component; auto rates = data::InterRegFlowMap::FlowRates{}; const auto& extQuant = elemCtx.extensiveQuantities(scvfIdx, timeIdx); const auto alpha = getValue(extQuant.extrusionFactor()) * faceArea; if (FluidSystem::phaseIsActive(oilPhaseIdx)) { const auto& up = elemCtx .intensiveQuantities(extQuant.upstreamIndex(oilPhaseIdx), timeIdx); using FluidState = std::remove_cv_t>; const auto pvtReg = up.pvtRegionIndex(); const auto bO = getValue(getInvB_ (up.fluidState(), oilPhaseIdx, pvtReg)); const auto qO = alpha * bO * getValue(extQuant.volumeFlux(oilPhaseIdx)); rates[Component::Oil] += qO; if (FluidSystem::phaseIsActive(gasPhaseIdx)) { const auto Rs = getValue( BlackOil::getRs_ (up.fluidState(), pvtReg)); rates[Component::Gas] += qO * Rs; rates[Component::Disgas] += qO * Rs; } } if (FluidSystem::phaseIsActive(gasPhaseIdx)) { const auto& up = elemCtx .intensiveQuantities(extQuant.upstreamIndex(gasPhaseIdx), timeIdx); using FluidState = std::remove_cv_t>; const auto pvtReg = up.pvtRegionIndex(); const auto bG = getValue(getInvB_ (up.fluidState(), gasPhaseIdx, pvtReg)); const auto qG = alpha * bG * getValue(extQuant.volumeFlux(gasPhaseIdx)); rates[Component::Gas] += qG; if (FluidSystem::phaseIsActive(oilPhaseIdx)) { const auto Rv = getValue( BlackOil::getRv_ (up.fluidState(), pvtReg)); rates[Component::Oil] += qG * Rv; rates[Component::Vapoil] += qG * Rv; } } if (FluidSystem::phaseIsActive(waterPhaseIdx)) { const auto& up = elemCtx .intensiveQuantities(extQuant.upstreamIndex(waterPhaseIdx), timeIdx); using FluidState = std::remove_cv_t>; const auto pvtReg = up.pvtRegionIndex(); const auto bW = getValue(getInvB_ (up.fluidState(), waterPhaseIdx, pvtReg)); rates[Component::Water] += alpha * bW * getValue(extQuant.volumeFlux(waterPhaseIdx)); } return rates; } const Simulator& simulator_; }; } // namespace Opm #endif