// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclThresholdPressure
*/
#ifndef EWOMS_ECL_THRESHOLD_PRESSURE_HH
#define EWOMS_ECL_THRESHOLD_PRESSURE_HH
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This class calculates the threshold pressure for grid faces according to the
* Eclipse Reference Manual.
*
* If the difference of the pressure potential between two cells is below the threshold
* pressure, the pressure potential difference is assumed to be zero, if it is larger
* than the threshold pressure, it is reduced by the threshold pressure.
*/
template
class EclThresholdPressure : public EclGenericThresholdPressure,
GetPropType,
GetPropType,
GetPropType>
{
using BaseType = EclGenericThresholdPressure,
GetPropType,
GetPropType,
GetPropType>;
using Simulator = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using ElementContext = GetPropType;
using FluidSystem = GetPropType;
enum { enableExperiments = getPropValue() };
enum { numPhases = FluidSystem::numPhases };
public:
EclThresholdPressure(const Simulator& simulator)
: BaseType(simulator.vanguard().cartesianIndexMapper(),
simulator.vanguard().gridView(),
simulator.model().elementMapper(),
simulator.vanguard().eclState(),
simulator.vanguard().deck(),
enableExperiments)
, simulator_(simulator)
{
}
/*!
* \brief Actually compute the threshold pressures over a face as a pre-compute step.
*/
void finishInit()
{
this->BaseType::finishInit();
if (this->enableThresholdPressure_ && !this->thpresDefault_.empty()) {
this->computeDefaultThresholdPressures_();
this->applyExplicitThresholdPressures_();
}
}
private:
// compute the defaults of the threshold pressures using the initial condition
void computeDefaultThresholdPressures_()
{
const auto& vanguard = simulator_.vanguard();
const auto& gridView = vanguard.gridView();
typedef MathToolbox Toolbox;
// loop over the whole grid and compute the maximum gravity adjusted pressure
// difference between two EQUIL regions.
auto elemIt = gridView.template begin*codim=*/ 0>();
const auto& elemEndIt = gridView.template end*codim=*/ 0>();
ElementContext elemCtx(simulator_);
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updateAll(elem);
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < stencil.numInteriorFaces(); ++ scvfIdx) {
const auto& face = stencil.interiorFace(scvfIdx);
unsigned i = face.interiorIndex();
unsigned j = face.exteriorIndex();
unsigned insideElemIdx = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
unsigned outsideElemIdx = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
unsigned equilRegionInside = this->elemEquilRegion_[insideElemIdx];
unsigned equilRegionOutside = this->elemEquilRegion_[outsideElemIdx];
if (equilRegionInside == equilRegionOutside)
// the current face is not at the boundary between EQUIL regions!
continue;
// don't include connections with negligible flow
const Evaluation& trans = simulator_.problem().transmissibility(elemCtx, i, j);
Scalar faceArea = face.area();
if (std::abs(faceArea*getValue(trans)) < 1e-18)
continue;
// determine the maximum difference of the pressure of any phase over the
// intersection
Scalar pth = 0.0;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
if (up.mobility(phaseIdx) > 0.0) {
Scalar phaseVal = Toolbox::value(extQuants.pressureDifference(phaseIdx));
pth = std::max(pth, std::abs(phaseVal));
}
}
int offset1 = equilRegionInside*this->numEquilRegions_ + equilRegionOutside;
int offset2 = equilRegionOutside*this->numEquilRegions_ + equilRegionInside;
this->thpresDefault_[offset1] = std::max(this->thpresDefault_[offset1], pth);
this->thpresDefault_[offset2] = std::max(this->thpresDefault_[offset2], pth);
}
}
// make sure that the threshold pressures is consistent for parallel
// runs. (i.e. take the maximum of all processes)
for (unsigned i = 0; i < this->thpresDefault_.size(); ++i)
this->thpresDefault_[i] = gridView.comm().max(this->thpresDefault_[i]);
}
const Simulator& simulator_;
};
} // namespace Opm
#endif