/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_INCOMPPROPERTIESBASIC_HEADER_INCLUDED #define OPM_INCOMPPROPERTIESBASIC_HEADER_INCLUDED #include #include #include #include namespace Opm { /// Concrete class implementing the incompressible property /// interface, reading all necessary input from parameters. /// /// Supports variable number of spatial dimensions, called D. /// Supports variable number of phases, called P. /// In general, when arguments call for n values of some vector or /// matrix property, such as saturation, they shall always be /// ordered cellwise: /// [s^1_0 s^2_0 s^3_0 s^1_1 s^2_2 ... ] /// in which s^i_j denotes saturation of phase i in cell j. class IncompPropertiesBasic : public IncompPropertiesInterface { public: /// Construct from parameters. /// The following parameters are accepted (defaults): /// num_phases (2) Must be 1 or 2. /// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic". /// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3 /// mu1 [mu2, mu3] (1.0) Viscosity in cP /// porosity (1.0) Porosity /// permeability (100.0) Permeability in mD IncompPropertiesBasic(const parameter::ParameterGroup& param, const int dim, const int num_cells); /// Construct from arguments a basic two phase fluid. IncompPropertiesBasic(const int num_phases, const SaturationPropsBasic::RelPermFunc& relpermfunc, const std::vector& rho, const std::vector& mu, const double porosity, const double permeability, const int dim, const int num_cells); /// Destructor. virtual ~IncompPropertiesBasic(); // ---- Rock interface ---- /// \return D, the number of spatial dimensions. virtual int numDimensions() const; /// \return N, the number of cells. virtual int numCells() const; /// \return Array of N porosity values. virtual const double* porosity() const; /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). virtual const double* permeability() const; // ---- Fluid interface ---- /// \return P, the number of phases (also the number of components). virtual int numPhases() const; /// \return Array of P viscosity values. virtual const double* viscosity() const; /// Densities of fluid phases at reservoir conditions. /// \return Array of P density values. virtual const double* density() const; /// Densities of fluid phases at surface conditions. /// \return Array of P density values. virtual const double* surfaceDensity() const; /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) virtual void relperm(const int n, const double* s, const int* cells, double* kr, double* dkrds) const; /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) virtual void capPress(const int n, const double* s, const int* cells, double* pc, double* dpcds) const; /// Obtain the range of allowable saturation values. /// In cell cells[i], saturation of phase p is allowed to be /// in the interval [smin[i*P + p], smax[i*P + p]]. /// \param[in] n Number of data points. /// \param[in] cells Array of n cell indices. /// \param[out] smin Array of nP minimum s values, array must be valid before calling. /// \param[out] smax Array of nP maximum s values, array must be valid before calling. virtual void satRange(const int n, const int* cells, double* smin, double* smax) const; private: RockBasic rock_; PvtPropertiesBasic pvt_; SaturationPropsBasic satprops_; std::vector viscosity_; }; } // namespace Opm #endif // OPM_INCOMPPROPERTIESBASIC_HEADER_INCLUDED