/* Copyright 2012, 2020 SINTEF Digital, Mathematics and Cybernetics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include #include #include namespace Opm { SimulatorReportSingle::SimulatorReportSingle() : pressure_time(0.0), transport_time(0.0), total_time(0.0), solver_time(0.0), assemble_time(0.0), pre_post_time(0.0), assemble_time_well(0.0), linear_solve_setup_time(0.0), linear_solve_time(0.0), update_time(0.0), output_write_time(0.0), total_well_iterations(0), total_linearizations( 0 ), total_newton_iterations( 0 ), total_linear_iterations( 0 ), min_linear_iterations ( std::numeric_limits::max() ), max_linear_iterations ( 0 ), converged(false), well_group_control_changed(false), exit_status(EXIT_SUCCESS), global_time(0), timestep_length(0.0) { } void SimulatorReportSingle::operator+=(const SimulatorReportSingle& sr) { pressure_time += sr.pressure_time; transport_time += sr.transport_time; linear_solve_setup_time += sr.linear_solve_setup_time; linear_solve_time += sr.linear_solve_time; solver_time += sr.solver_time; assemble_time += sr.assemble_time; pre_post_time += sr.pre_post_time; assemble_time_well += sr.assemble_time_well; update_time += sr.update_time; output_write_time += sr.output_write_time; total_time += sr.total_time; total_well_iterations += sr.total_well_iterations; total_linearizations += sr.total_linearizations; total_newton_iterations += sr.total_newton_iterations; total_linear_iterations += sr.total_linear_iterations; if (sr.total_linear_iterations > 0) { min_linear_iterations = std::min(min_linear_iterations, sr.total_linear_iterations); } max_linear_iterations = std::max(max_linear_iterations, sr.total_linear_iterations); // It makes no sense adding time points. Therefore, do not // overwrite the value of global_time which gets set in // NonlinearSolverEbos.hpp by the line: // report.global_time = timer.simulationTimeElapsed(); } void SimulatorReportSingle::reportStep(std::ostringstream& ss) const { if (total_well_iterations != 0) { ss << fmt::format("Well its={:2}", total_well_iterations); } ss << fmt::format(" Newton its={:2}, linearizations={:2} ({:2.1f}sec), linear its={:3} ({:2.1f}sec)", total_newton_iterations, total_linearizations, assemble_time, total_linear_iterations, linear_solve_time); } void SimulatorReportSingle::reportFullyImplicit(std::ostream& os, const SimulatorReportSingle* failureReport) const { os << fmt::format("Total time (seconds): {:9.2f} \n", total_time); os << fmt::format("Solver time (seconds): {:9.2f} \n", solver_time + (failureReport ? failureReport->solver_time : 0.0)); if (assemble_time > 0.0 || linear_solve_time > 0.0) { double t = assemble_time + (failureReport ? failureReport->assemble_time : 0.0); os << fmt::format(" Assembly time (seconds): {:9.2f}", t); if (failureReport) { os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)", failureReport->assemble_time, 100*failureReport->assemble_time/t); } os << std::endl; t = assemble_time_well + (failureReport ? failureReport->assemble_time_well : 0.0); os << fmt::format(" Well assembly (seconds): {:7.2f}", t); if (failureReport) { os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)", failureReport->assemble_time_well, 100*failureReport->assemble_time_well/t); } os << std::endl; t = linear_solve_time + (failureReport ? failureReport->linear_solve_time : 0.0); os << fmt::format(" Linear solve time (seconds):{:8.2f}", t); if (failureReport) { os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)", failureReport->linear_solve_time, 100*failureReport->linear_solve_time/t); } os << std::endl; t = linear_solve_setup_time + (failureReport ? failureReport->linear_solve_setup_time : 0.0); os << fmt::format(" Linear setup (seconds): {:7.2f}", t); if (failureReport) { os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)", failureReport->linear_solve_setup_time, 100*failureReport->linear_solve_setup_time/t); } os << std::endl; t = update_time + (failureReport ? failureReport->update_time : 0.0); os << fmt::format(" Update time (seconds): {:7.2f}", t); if (failureReport) { os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)", failureReport->update_time, 100*failureReport->update_time/t); } os << std::endl; t = pre_post_time + (failureReport ? failureReport->pre_post_time : 0.0); os << fmt::format(" Pre/post step (seconds): {:7.2f}", t); if (failureReport) { os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)", failureReport->pre_post_time, 100*failureReport->pre_post_time/t); } os << std::endl; os << fmt::format(" Output write time (seconds): {:7.2f}", output_write_time + (failureReport ? failureReport->output_write_time : 0.0)); os << std::endl; } int n = total_linearizations + (failureReport ? failureReport->total_linearizations : 0); os << fmt::format("Overall Linearizations: {:7}", n); if (failureReport) { os << fmt::format(" (Failed: {:3}; {:2.1f}%)", failureReport->total_linearizations, 100.0*failureReport->total_linearizations/n); } os << std::endl; n = total_newton_iterations + (failureReport ? failureReport->total_newton_iterations : 0); os << fmt::format("Overall Newton Iterations: {:7}", n); if (failureReport) { os << fmt::format(" (Failed: {:3}; {:2.1f}%)", failureReport->total_newton_iterations, 100.0*failureReport->total_newton_iterations/n); } os << std::endl; n = total_linear_iterations + (failureReport ? failureReport->total_linear_iterations : 0); os << fmt::format("Overall Linear Iterations: {:7}", n); if (failureReport) { os << fmt::format(" (Failed: {:3}; {:2.1f}%)", failureReport->total_linear_iterations, 100.0*failureReport->total_linear_iterations/n); } os << std::endl; } void SimulatorReport::operator+=(const SimulatorReportSingle& sr) { if (sr.converged) { success += sr; } else { failure += sr; } stepreports.push_back(sr); } void SimulatorReport::operator+=(const SimulatorReport& sr) { success += sr.success; failure += sr.failure; stepreports.insert(stepreports.end(), sr.stepreports.begin(), sr.stepreports.end()); } void SimulatorReport::reportFullyImplicit(std::ostream& os) const { success.reportFullyImplicit(os, &failure); } void SimulatorReport::fullReports(std::ostream& os) const { os << " Time(day) TStep(day) Assembly LSetup LSolve Update Output WellIt Lins NewtIt LinIt Conv\n"; for (size_t i = 0; i < this->stepreports.size(); ++i) { const SimulatorReportSingle& sr = this->stepreports[i]; os.precision(10); os << std::defaultfloat; os << std::setw(11) << unit::convert::to(sr.global_time, unit::day) << " "; os << std::setw(11) << unit::convert::to(sr.timestep_length, unit::day) << " "; os.precision(4); os << std::fixed; os << std::setw(9) << sr.assemble_time << " "; os << std::setw(9) << sr.linear_solve_setup_time << " "; os << std::setw(9) << sr.linear_solve_time << " "; os << std::setw(9) << sr.update_time << " "; os << std::setw(9) << sr.output_write_time << " "; os.precision(6); os << std::defaultfloat; os << std::setw(6) << sr.total_well_iterations << " "; os << std::setw(4) << sr.total_linearizations << " "; os << std::setw(6) << sr.total_newton_iterations << " "; os << std::setw(5) << sr.total_linear_iterations << " "; os << std::setw(4) << sr.converged << "\n"; } } } // namespace Opm