// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /** * \file * * \copydoc Opm::EclTracerModel */ #ifndef EWOMS_ECL_TRACER_MODEL_HH #define EWOMS_ECL_TRACER_MODEL_HH #include #include #include #include #include #include #include #include #include namespace Opm::Properties { template struct EnableTracerModel { using type = UndefinedProperty; }; } // namespace Opm::Properties namespace Opm { /*! * \ingroup EclBlackOilSimulator * * \brief A class which handles tracers as specified in by ECL * * TODO: MPI parallelism. */ template class EclTracerModel { using Simulator = GetPropType; using GridView = GetPropType; using Grid = GetPropType; using Scalar = GetPropType; using Stencil = GetPropType; using FluidSystem = GetPropType; using ElementContext = GetPropType; using RateVector = GetPropType; using Indices = GetPropType; typedef Opm::DenseAd::Evaluation TracerEvaluation; enum { numEq = getPropValue() }; enum { numPhases = FluidSystem::numPhases }; enum { waterPhaseIdx = FluidSystem::waterPhaseIdx }; enum { oilPhaseIdx = FluidSystem::oilPhaseIdx }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim<0>::Iterator ElementIterator; typedef Dune::BCRSMatrix> TracerMatrix; typedef Dune::BlockVector> TracerVector; public: EclTracerModel(Simulator& simulator) : simulator_(simulator) { } /*! * \brief Initialize all internal data structures needed by the tracer module */ void init() { const auto& tracers = simulator_.vanguard().eclState().tracer(); const auto& comm = simulator_.gridView().comm(); if (tracers.size() == 0) return; // tracer treatment is supposed to be disabled if (!EWOMS_GET_PARAM(TypeTag, bool, EnableTracerModel)) { if (simulator_.gridView().comm().rank() == 0) { std::cout << "Warning: Tracer model is disabled but the deck contains the TRACERS keyword\n" << "The tracer model must be explictly activated using --enable-tracer-model=true\n" << std::flush; } return; // Tracer transport must be enabled by the user } if (comm.size() > 1) { tracerNames_.resize(0); if (comm.rank() == 0) std::cout << "Warning: The tracer model currently does not work for parallel runs\n" << std::flush; return; } // retrieve the number of tracers from the deck const size_t numTracers = tracers.size(); tracerNames_.resize(numTracers); tracerConcentration_.resize(numTracers); storageOfTimeIndex1_.resize(numTracers); // the phase where the tracer is tracerPhaseIdx_.resize(numTracers); size_t numGridDof = simulator_.model().numGridDof(); size_t tracerIdx = 0; for (const auto& tracer : tracers) { tracerNames_[tracerIdx] = tracer.name; if (tracer.phase == Phase::WATER) tracerPhaseIdx_[tracerIdx] = waterPhaseIdx; else if (tracer.phase == Phase::OIL) tracerPhaseIdx_[tracerIdx] = oilPhaseIdx; else if (tracer.phase == Phase::GAS) tracerPhaseIdx_[tracerIdx] = gasPhaseIdx; tracerConcentration_[tracerIdx].resize(numGridDof); storageOfTimeIndex1_[tracerIdx].resize(numGridDof); //TBLK keyword if (!tracer.concentration.empty()){ const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper(); int tblkDatasize = tracer.concentration.size(); if (tblkDatasize < simulator_.vanguard().cartesianSize()){ throw std::runtime_error("Wrong size of TBLK for" + tracer.name); } for (size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx){ int cartDofIdx = cartMapper.cartesianIndex(globalDofIdx); tracerConcentration_[tracerIdx][globalDofIdx] = tracer.concentration[cartDofIdx]; } } //TVDPF keyword else { const auto& eclGrid = simulator_.vanguard().eclState().getInputGrid(); const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper(); for (size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx){ int cartDofIdx = cartMapper.cartesianIndex(globalDofIdx); const auto& center = eclGrid.getCellCenter(cartDofIdx); tracerConcentration_[tracerIdx][globalDofIdx] = tracer.tvdpf.evaluate("TRACER_CONCENTRATION", center[2]); } } ++tracerIdx; } // initial tracer concentration tracerConcentrationInitial_ = tracerConcentration_; // residual of tracers tracerResidual_.resize(numGridDof); // allocate matrix for storing the Jacobian of the tracer residual tracerMatrix_ = new TracerMatrix(numGridDof, numGridDof, TracerMatrix::random); // find the sparsity pattern of the tracer matrix typedef std::set NeighborSet; std::vector neighbors(numGridDof); Stencil stencil(simulator_.gridView(), simulator_.model().dofMapper() ); ElementIterator elemIt = simulator_.gridView().template begin<0>(); const ElementIterator elemEndIt = simulator_.gridView().template end<0>(); for (; elemIt != elemEndIt; ++elemIt) { const Element& elem = *elemIt; stencil.update(elem); for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) { unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx); for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) { unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx); neighbors[myIdx].insert(neighborIdx); } } } // allocate space for the rows of the matrix for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx) tracerMatrix_->setrowsize(dofIdx, neighbors[dofIdx].size()); tracerMatrix_->endrowsizes(); // fill the rows with indices. each degree of freedom talks to // all of its neighbors. (it also talks to itself since // degrees of freedom are sometimes quite egocentric.) for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx) { typename NeighborSet::iterator nIt = neighbors[dofIdx].begin(); typename NeighborSet::iterator nEndIt = neighbors[dofIdx].end(); for (; nIt != nEndIt; ++nIt) tracerMatrix_->addindex(dofIdx, *nIt); } tracerMatrix_->endindices(); const int sizeCartGrid = simulator_.vanguard().cartesianSize(); cartToGlobal_.resize(sizeCartGrid); for (unsigned i = 0; i < numGridDof; ++i) { int cartIdx = simulator_.vanguard().cartesianIndex(i); cartToGlobal_[cartIdx] = i; } } /*! * \brief Return the number of tracers considered by the tracerModel. */ int numTracers() const { return tracerNames_.size(); } /*! * \brief Return the tracer name */ const std::string& tracerName(int tracerIdx) const { if (numTracers()==0) throw std::logic_error("This method should never be called when there are no tracers in the model"); return tracerNames_[tracerIdx]; } /*! * \brief Return the tracer concentration for tracer index and global DofIdx */ Scalar tracerConcentration(int tracerIdx, int globalDofIdx) const { if (numTracers()==0) return 0.0; return tracerConcentration_[tracerIdx][globalDofIdx]; } void beginTimeStep() { if (numTracers()==0) return; tracerConcentrationInitial_ = tracerConcentration_; // compute storageCache ElementContext elemCtx(simulator_); auto elemIt = simulator_.gridView().template begin(); auto elemEndIt = simulator_.gridView().template end(); for (; elemIt != elemEndIt; ++ elemIt) { elemCtx.updateAll(*elemIt); int globalDofIdx = elemCtx.globalSpaceIndex(0, 0); for (int tracerIdx = 0; tracerIdx < numTracers(); ++ tracerIdx){ Scalar storageOfTimeIndex1; computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/0, tracerIdx); storageOfTimeIndex1_[tracerIdx][globalDofIdx] = storageOfTimeIndex1; } } } /*! * \brief Informs the tracer model that a time step has just been finished. */ void endTimeStep() { if (numTracers()==0) return; for (int tracerIdx = 0; tracerIdx < numTracers(); ++ tracerIdx){ TracerVector dx(tracerResidual_.size()); // Newton step (currently the system is linear, converge in one iteration) for (int iter = 0; iter < 5; ++ iter){ linearize_(tracerIdx); linearSolve_(*tracerMatrix_, dx, tracerResidual_); tracerConcentration_[tracerIdx] -= dx; if (dx.two_norm()<1e-2) break; } } } /*! * \brief This method writes the complete state of all tracer * to the hard disk. */ template void serialize(Restarter& res OPM_UNUSED) { /* not implemented */ } /*! * \brief This method restores the complete state of the tracer * from disk. * * It is the inverse of the serialize() method. */ template void deserialize(Restarter& res OPM_UNUSED) { /* not implemented */ } protected: // evaluate storage term for all tracers in a single cell template void computeStorage_(LhsEval& tracerStorage, const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx, const int tracerIdx) { int globalDofIdx = elemCtx.globalSpaceIndex(scvIdx, timeIdx); const auto& intQuants = elemCtx.intensiveQuantities(scvIdx, timeIdx); const auto& fs = intQuants.fluidState(); Scalar phaseVolume = Opm::decay(fs.saturation(tracerPhaseIdx_[tracerIdx])) *Opm::decay(fs.invB(tracerPhaseIdx_[tracerIdx])) *Opm::decay(intQuants.porosity()); // avoid singular matrix if no water is present. phaseVolume = Opm::max(phaseVolume, 1e-10); if (std::is_same::value) tracerStorage = phaseVolume * tracerConcentrationInitial_[tracerIdx][globalDofIdx]; else tracerStorage = phaseVolume * Opm::variable(tracerConcentration_[tracerIdx][globalDofIdx][0], 0); } // evaluate the tracerflux over one face void computeFlux_(TracerEvaluation & tracerFlux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx, const int tracerIdx) { const auto& stencil = elemCtx.stencil(timeIdx); const auto& scvf = stencil.interiorFace(scvfIdx); const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); unsigned inIdx = extQuants.interiorIndex(); const int tracerPhaseIdx = tracerPhaseIdx_[tracerIdx]; unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx); int globalUpIdx = elemCtx.globalSpaceIndex(upIdx, timeIdx); const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx); const auto& fs = intQuants.fluidState(); Scalar A = scvf.area(); Scalar v = Opm::decay(extQuants.volumeFlux(tracerPhaseIdx)); Scalar b = Opm::decay(fs.invB(tracerPhaseIdx_[tracerIdx])); Scalar c = tracerConcentration_[tracerIdx][globalUpIdx]; if (inIdx == upIdx) tracerFlux = A*v*b*Opm::variable(c, 0); else tracerFlux = A*v*b*c; } bool linearSolve_(const TracerMatrix& M, TracerVector& x, TracerVector& b) { #if ! DUNE_VERSION_NEWER(DUNE_COMMON, 2,7) Dune::FMatrixPrecision::set_singular_limit(1.e-30); Dune::FMatrixPrecision::set_absolute_limit(1.e-30); #endif x = 0.0; Scalar tolerance = 1e-2; int maxIter = 100; int verbosity = 0; typedef Dune::BiCGSTABSolver TracerSolver; typedef Dune::MatrixAdapter TracerOperator; typedef Dune::SeqScalarProduct< TracerVector > TracerScalarProduct ; typedef Dune::SeqILU< TracerMatrix, TracerVector, TracerVector > TracerPreconditioner; TracerOperator tracerOperator(M); TracerScalarProduct tracerScalarProduct; TracerPreconditioner tracerPreconditioner(M, 0, 1); // results in ILU0 TracerSolver solver (tracerOperator, tracerScalarProduct, tracerPreconditioner, tolerance, maxIter, verbosity); Dune::InverseOperatorResult result; solver.apply(x, b, result); // return the result of the solver return result.converged; } void linearize_(int tracerIdx) { (*tracerMatrix_) = 0.0; tracerResidual_ = 0.0; size_t numGridDof = simulator_.model().numGridDof(); std::vector volumes(numGridDof, 0.0); ElementContext elemCtx(simulator_); auto elemIt = simulator_.gridView().template begin(); auto elemEndIt = simulator_.gridView().template end(); for (; elemIt != elemEndIt; ++ elemIt) { elemCtx.updateAll(*elemIt); Scalar extrusionFactor = elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor(); Opm::Valgrind::CheckDefined(extrusionFactor); assert(Opm::isfinite(extrusionFactor)); assert(extrusionFactor > 0.0); Scalar scvVolume = elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume() * extrusionFactor; Scalar dt = elemCtx.simulator().timeStepSize(); size_t I = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timIdx=*/0); volumes[I] = scvVolume; TracerEvaluation localStorage; TracerEvaluation storageOfTimeIndex0; Scalar storageOfTimeIndex1; computeStorage_(storageOfTimeIndex0, elemCtx, 0, /*timIdx=*/0, tracerIdx); if (elemCtx.enableStorageCache()) storageOfTimeIndex1 = storageOfTimeIndex1_[tracerIdx][I]; else computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/1, tracerIdx); localStorage = (storageOfTimeIndex0 - storageOfTimeIndex1) * scvVolume/dt; tracerResidual_[I][0] += localStorage.value(); //residual + flux (*tracerMatrix_)[I][I][0][0] = localStorage.derivative(0); size_t numInteriorFaces = elemCtx.numInteriorFaces(/*timIdx=*/0); for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) { TracerEvaluation flux; const auto& face = elemCtx.stencil(0).interiorFace(scvfIdx); unsigned j = face.exteriorIndex(); unsigned J = elemCtx.globalSpaceIndex(/*dofIdx=*/ j, /*timIdx=*/0); computeFlux_(flux, elemCtx, scvfIdx, 0, tracerIdx); tracerResidual_[I][0] += flux.value(); //residual + flux (*tracerMatrix_)[J][I][0][0] = -flux.derivative(0); (*tracerMatrix_)[I][J][0][0] = flux.derivative(0); } } // Wells const int episodeIdx = simulator_.episodeIndex(); const auto& wells = simulator_.vanguard().schedule().getWells(episodeIdx); for (const auto& well : wells) { if (well.getStatus() == Opm::Well::Status::SHUT) continue; const double wtracer = well.getTracerProperties().getConcentration(tracerNames_[tracerIdx]); std::array cartesianCoordinate; for (auto& connection : well.getConnections()) { if (connection.state() == Opm::Connection::State::SHUT) continue; cartesianCoordinate[0] = connection.getI(); cartesianCoordinate[1] = connection.getJ(); cartesianCoordinate[2] = connection.getK(); const size_t cartIdx = simulator_.vanguard().cartesianIndex(cartesianCoordinate); const int I = cartToGlobal_[cartIdx]; Scalar rate = simulator_.problem().wellModel().well(well.name())->volumetricSurfaceRateForConnection(I, tracerPhaseIdx_[tracerIdx]); if (rate > 0) tracerResidual_[I][0] -= rate*wtracer; else if (rate < 0) tracerResidual_[I][0] -= rate*tracerConcentration_[tracerIdx][I]; } } } Simulator& simulator_; std::vector tracerNames_; std::vector tracerPhaseIdx_; std::vector>> tracerConcentration_; std::vector>> tracerConcentrationInitial_; TracerMatrix *tracerMatrix_; TracerVector tracerResidual_; std::vector cartToGlobal_; std::vector>> storageOfTimeIndex1_; }; } // namespace Opm #endif