/* Copyright (C) 2009-2013 by Andreas Lauser Copyright (C) 2010 by Benjamin Faigle Copyright (C) 2010 by Klaus Mosthaf This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ /*! * \file * * \copydoc Ewoms::Tutorial1Problem */ #ifndef EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian1}@*/ #define EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian2}@*/ // The numerical model #include // The spatial discretization (VCFV == Vertex-Centered Finite Volumes) #include /*@\label{tutorial1:include-discretization}@*/ // The chemical species that are used #include #include // Headers required for the capillary pressure law #include /*@\label{tutorial1:rawLawInclude}@*/ #include #include // For the DUNE grid #include /*@\label{tutorial1:include-grid-manager}@*/ #include /*@\label{tutorial1:include-grid-manager}@*/ // For Dune::FieldMatrix #include #include namespace Ewoms { // forward declaration of the problem class template class Tutorial1Problem; } namespace Opm { namespace Properties { // Create a new type tag for the problem NEW_TYPE_TAG(Tutorial1Problem, INHERITS_FROM(ImmiscibleTwoPhaseModel)); /*@\label{tutorial1:create-type-tag}@*/ // Select the vertex centered finite volume method as spatial discretization SET_TAG_PROP(Tutorial1Problem, SpatialDiscretizationSplice, VcfvDiscretization); /*@\label{tutorial1:set-spatial-discretization}@*/ // Set the "Problem" property SET_TYPE_PROP(Tutorial1Problem, Problem, Ewoms::Tutorial1Problem); /*@\label{tutorial1:set-problem}@*/ // Set grid and the grid manager to be used SET_TYPE_PROP(Tutorial1Problem, Grid, Dune::YaspGrid); /*@\label{tutorial1:set-grid}@*/ SET_TYPE_PROP(Tutorial1Problem, GridManager, Ewoms::CubeGridManager); /*@\label{tutorial1:set-grid-manager}@*/ // Set the wetting phase /*@\label{tutorial1:2p-system-start}@*/ SET_TYPE_PROP(Tutorial1Problem, WettingPhase, /*@\label{tutorial1:wettingPhase}@*/ Opm::LiquidPhase >); // Set the non-wetting phase SET_TYPE_PROP(Tutorial1Problem, NonwettingPhase, /*@\label{tutorial1:nonwettingPhase}@*/ Opm::LiquidPhase >); /*@\label{tutorial1:2p-system-end}@*/ // Set the material law SET_PROP(Tutorial1Problem, MaterialLaw) { private: // create a class holding the necessary information for a // two-phase capillary pressure law typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx }; enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx }; typedef Opm::TwoPhaseMaterialTraits Traits; // define the material law which is parameterized by effective // saturations typedef Opm::RegularizedBrooksCorey RawMaterialLaw; /*@\label{tutorial1:rawlaw}@*/ public: // Convert absolute saturations into effective ones before passing // it to the base capillary pressure law typedef Opm::EffToAbsLaw type; /*@\label{tutorial1:eff2abs}@*/ }; // Disable gravity SET_BOOL_PROP(Tutorial1Problem, EnableGravity, false); /*@\label{tutorial1:gravity}@*/ // define how long the simulation should run [s] SET_SCALAR_PROP(Tutorial1Problem, EndTime, 100e3); /*@\label{tutorial1:default-params-begin}@*/ // define the size of the initial time step [s] SET_SCALAR_PROP(Tutorial1Problem, InitialTimeStepSize, 125.0); // define the physical size of the problem's domain [m] SET_SCALAR_PROP(Tutorial1Problem, DomainSizeX, 300.0); /*@\label{tutorial1:grid-default-params-begin}@*/ SET_SCALAR_PROP(Tutorial1Problem, DomainSizeY, 60.0); SET_SCALAR_PROP(Tutorial1Problem, DomainSizeZ, 0.0); // // define the number of cells used for discretizing the physical domain SET_INT_PROP(Tutorial1Problem, CellsX, 100); SET_INT_PROP(Tutorial1Problem, CellsY, 1); SET_INT_PROP(Tutorial1Problem, CellsZ, 1); /*@\label{tutorial1:default-params-end}@*/ } // namespace Properties } // namespace Opm namespace Ewoms { //! Tutorial problem using the "immiscible" model. template class Tutorial1Problem : public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial1:def-problem}@*/ { typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; // Grid dimension enum { dimWorld = GridView::dimensionworld }; // The type of the intrinsic permeability tensor typedef Dune::FieldMatrix DimMatrix; // eWoms specific types are specified via the property system typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial1:matLawObjectType}@*/ // phase indices enum { numPhases = FluidSystem::numPhases }; enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx }; enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx }; // Indices of the conservation equations enum { contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx }; enum { contiNonWettingEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx }; public: //! The constructor of the problem Tutorial1Problem(Simulator &simulator) : ParentType(simulator) , eps_(3e-6) { // Use an isotropic and homogeneous intrinsic permeability K_ = this->toDimMatrix_(1e-7); // Parameters of the Brooks-Corey law materialParams_.setEntryPressure(500.0 /*Pa*/); /*@\label{tutorial1:setLawParams}@*/ materialParams_.setLambda(2); // shape parameter // Set the residual saturations materialParams_.setResidualSaturation(wettingPhaseIdx, 0.0); materialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0); // wrap up the initialization of the material law's parameters materialParams_.finalize(); } //! Specifies the problem name. This is used for files generated by the simulation. std::string name() const { return "tutorial1"; } //! Returns the temperature at a given position. template Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const { return 283.15; } //! Returns the intrinsic permeability tensor [m^2] at a position. template const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial1:permeability}@*/ int spaceIdx, int timeIdx) const { return K_; } //! Defines the porosity [-] of the medium at a given position template Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const /*@\label{tutorial1:porosity}@*/ { return 0.2; } //! Returns the parameter object for the material law at a given position template const MaterialLawParams &materialLawParams(const Context &context, /*@\label{tutorial1:matLawParams}@*/ int spaceIdx, int timeIdx) const { return materialParams_; } //! Evaluates the boundary conditions. template void boundary(BoundaryRateVector &values, const Context &context, int spaceIdx, int timeIdx) const { const auto &pos = context.pos(spaceIdx, timeIdx); if (pos[0] < eps_) { // Free-flow conditions on left boundary const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx); Opm::ImmiscibleFluidState fs; Scalar Sw = 1.0; fs.setSaturation(wettingPhaseIdx, Sw); fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw); fs.setTemperature(temperature(context, spaceIdx, timeIdx)); Scalar pC[numPhases]; MaterialLaw::capillaryPressures(pC, materialParams, fs); fs.setPressure(wettingPhaseIdx, 200e3); fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]); values.setFreeFlow(context, spaceIdx, timeIdx, fs); } else if (pos[0] > this->boundingBoxMax()[0] - eps_) { // forced outflow at the right boundary RateVector massRate(0.0); massRate[contiWettingEqIdx] = 0.0; // [kg / (s m^2)] massRate[contiNonWettingEqIdx] = 3e-2; // [kg / (s m^2)] values.setMassRate(massRate); } else // no flow at the remaining boundaries values.setNoFlow(); } //! Evaluates the source term for all conserved quantities at a given //! position of the domain [kg/(m^3 * s)]. Positive values mean that //! mass is created. template void source(RateVector &source, const Context &context, int spaceIdx, int timeIdx) const { source[contiWettingEqIdx] = 0.0; source[contiNonWettingEqIdx] = 0.0; } //! Evaluates the initial value at a given position in the domain. template void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const { Opm::ImmiscibleFluidState fs; // the domain is initially fully saturated by LNAPL Scalar Sw = 0.0; fs.setSaturation(wettingPhaseIdx, Sw); fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw); // the temperature is given by the temperature() method fs.setTemperature(temperature(context, spaceIdx, timeIdx)); // set pressure of the wetting phase to 200 kPa = 2 bar Scalar pC[numPhases]; MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx), fs); fs.setPressure(wettingPhaseIdx, 200e3); fs.setPressure(nonWettingPhaseIdx, 200e3 + pC[nonWettingPhaseIdx] - pC[nonWettingPhaseIdx]); values.assignNaive(fs); } private: DimMatrix K_; // Object that holds the parameters of required by the capillary pressure law. MaterialLawParams materialParams_; /*@\label{tutorial1:matParamsObject}@*/ // small epsilon value Scalar eps_; }; } // namespace Ewoms #endif