/* Copyright 2015 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_AUTODIFF_VFPHELPERS_HPP_ #define OPM_AUTODIFF_VFPHELPERS_HPP_ #include #include #include #include #include #include #include #include /** * This file contains a set of helper functions used by VFPProd / VFPInj. */ namespace Opm { namespace detail { /** * Returns zero if input value is NaN of INF */ inline double zeroIfNanInf(const double& value, const std::string& rate, const VFPProdTable& table) { const bool nan_or_inf = std::isnan(value) || std::isinf(value); if (nan_or_inf) { std::string msg = "Problem with VFPPROD keyword table " + std::to_string(table.getTableNum()) + "\n" + "In " + table.location().filename + " line " + std::to_string(table.location().lineno) + "\n" "Nan or inf encountered while calculating " + rate + " - using zero"; OpmLog::warning("NAN_OR_INF_VFP", msg); } return nan_or_inf ? 0.0 : value; } /** * Returns zero if input value is NaN or INF */ template inline EvalWell zeroIfNanInf(const EvalWell& value, const std::string& rate, const VFPProdTable& table) { const bool nan_or_inf = std::isnan(value.value()) || std::isinf(value.value()); if (nan_or_inf) { std::string msg = "Problem with VFPPROD keyword table " + std::to_string(table.getTableNum()) + "\n" + "In " + table.location().filename + " line " + std::to_string(table.location().lineno) + "\n" "Nan or inf encountered while calculating " + rate + " - using zero"; OpmLog::warning("NAN_OR_INF_VFP_EVAL", msg); } using Toolbox = MathToolbox; return nan_or_inf ? Toolbox::createConstantZero(value) : value; } /** * Computes the flo parameter according to the flo_type_ * for production tables * @return Production rate of oil, gas or liquid. */ template static T getFlo(const VFPProdTable& table, const T& aqua, const T& liquid, const T& vapour) { auto type = table.getFloType(); switch (type) { case VFPProdTable::FLO_TYPE::FLO_OIL: //Oil = liquid phase return liquid; case VFPProdTable::FLO_TYPE::FLO_LIQ: //Liquid = aqua + liquid phases return aqua + liquid; case VFPProdTable::FLO_TYPE::FLO_GAS: //Gas = vapor phase return vapour; default: throw std::logic_error("Invalid FLO_TYPE"); } } /** * Computes the flo parameter according to the flo_type_ * for injection tables * @return Production rate of oil, gas or liquid. */ template static T getFlo(const VFPInjTable& table, const T& aqua, const T& liquid, const T& vapour) { auto type = table.getFloType(); switch (type) { case VFPInjTable::FLO_TYPE::FLO_OIL: //Oil = liquid phase return liquid; case VFPInjTable::FLO_TYPE::FLO_WAT: //Liquid = aqua phase return aqua; case VFPInjTable::FLO_TYPE::FLO_GAS: //Gas = vapor phase return vapour; default: throw std::logic_error("Invalid FLO_TYPE"); } } /** * Computes the wfr parameter according to the wfr_type_ * @return Production rate of oil, gas or liquid. */ template static T getWFR(const VFPProdTable& table, const T& aqua, const T& liquid, const T& vapour) { auto type = table.getWFRType(); switch(type) { case VFPProdTable::WFR_TYPE::WFR_WOR: //Water-oil ratio = water / oil return zeroIfNanInf(aqua/liquid, "WOR", table); case VFPProdTable::WFR_TYPE::WFR_WCT: //Water cut = water / (water + oil) return zeroIfNanInf(aqua / (aqua + liquid), "WCT", table); case VFPProdTable::WFR_TYPE::WFR_WGR: //Water-gas ratio = water / gas return zeroIfNanInf(aqua / vapour, "WGR", table); default: throw std::logic_error("Invalid WFR_TYPE"); } } /** * Computes the gfr parameter according to the gfr_type_ * @return Production rate of oil, gas or liquid. */ template static T getGFR(const VFPProdTable& table, const T& aqua, const T& liquid, const T& vapour) { auto type = table.getGFRType(); switch(type) { case VFPProdTable::GFR_TYPE::GFR_GOR: // Gas-oil ratio = gas / oil return zeroIfNanInf(vapour / liquid, "GOR", table); case VFPProdTable::GFR_TYPE::GFR_GLR: // Gas-liquid ratio = gas / (oil + water) return zeroIfNanInf(vapour / (liquid + aqua), "GLR", table); case VFPProdTable::GFR_TYPE::GFR_OGR: // Oil-gas ratio = oil / gas return zeroIfNanInf(liquid / vapour, "OGR", table); default: throw std::logic_error("Invalid GFR_TYPE"); } } /** * Helper struct for linear interpolation */ struct InterpData { InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {} int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value] double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention double factor_; // Interpolation factor }; /** * Helper function to find indices etc. for linear interpolation and extrapolation * @param value_in Value to find in values * @param values Sorted list of values to search for value in. * @return Data required to find the interpolated value */ inline InterpData findInterpData(const double& value_in, const std::vector& values) { InterpData retval; const int nvalues = values.size(); // chopping the value to be zero, which means we do not // extrapolate the table towards nagative ranges const double value = value_in < 0.? 0. : value_in; //If we only have one value in our vector, return that if (values.size() == 1) { retval.ind_[0] = 0; retval.ind_[1] = 0; retval.inv_dist_ = 0.0; retval.factor_ = 0.0; } // Else search in the vector else { //If value is less than all values, use first interval if (value < values.front()) { retval.ind_[0] = 0; retval.ind_[1] = 1; } //If value is greater than all values, use last interval else if (value >= values.back()) { retval.ind_[0] = nvalues-2; retval.ind_[1] = nvalues-1; } else { //Search internal intervals for (int i=1; i= value) { retval.ind_[0] = i-1; retval.ind_[1] = i; break; } } } const double start = values[retval.ind_[0]]; const double end = values[retval.ind_[1]]; //Find interpolation ratio if (end > start) { //FIXME: Possible source for floating point error here if value and floor are large, //but very close to each other retval.inv_dist_ = 1.0 / (end-start); retval.factor_ = (value-start) * retval.inv_dist_; } else { retval.inv_dist_ = 0.0; retval.factor_ = 0.0; } } // Disallow extrapolation with higher factor than 3.0. // The factor 3.0 has been chosen because it works well // with certain testcases, and may not be optimal. if (retval.factor_ > 3.0) { retval.factor_ = 3.0; } return retval; } /** * An "ADB-like" structure with a single value and a set of derivatives */ struct VFPEvaluation { VFPEvaluation() : value(0.0), dthp(0.0), dwfr(0.0), dgfr(0.0), dalq(0.0), dflo(0.0) {}; double value; double dthp; double dwfr; double dgfr; double dalq; double dflo; }; inline VFPEvaluation operator+( VFPEvaluation lhs, const VFPEvaluation& rhs) { lhs.value += rhs.value; lhs.dthp += rhs.dthp; lhs.dwfr += rhs.dwfr; lhs.dgfr += rhs.dgfr; lhs.dalq += rhs.dalq; lhs.dflo += rhs.dflo; return lhs; } inline VFPEvaluation operator-( VFPEvaluation lhs, const VFPEvaluation& rhs) { lhs.value -= rhs.value; lhs.dthp -= rhs.dthp; lhs.dwfr -= rhs.dwfr; lhs.dgfr -= rhs.dgfr; lhs.dalq -= rhs.dalq; lhs.dflo -= rhs.dflo; return lhs; } inline VFPEvaluation operator*( double lhs, const VFPEvaluation& rhs) { VFPEvaluation retval; retval.value = rhs.value * lhs; retval.dthp = rhs.dthp * lhs; retval.dwfr = rhs.dwfr * lhs; retval.dgfr = rhs.dgfr * lhs; retval.dalq = rhs.dalq * lhs; retval.dflo = rhs.dflo * lhs; return retval; } /** * Helper function which interpolates data using the indices etc. given in the inputs. */ inline VFPEvaluation interpolate( const VFPProdTable& table, const InterpData& flo_i, const InterpData& thp_i, const InterpData& wfr_i, const InterpData& gfr_i, const InterpData& alq_i) { //Values and derivatives in a 5D hypercube VFPEvaluation nn[2][2][2][2][2]; //Pick out nearest neighbors (nn) to our evaluation point //This is not really required, but performance-wise it may pay off, since the 32-elements //we copy to (nn) will fit better in cache than the full original table for the //interpolation below. //The following ladder of for loops will presumably be unrolled by a reasonable compiler. for (int t=0; t<=1; ++t) { for (int w=0; w<=1; ++w) { for (int g=0; g<=1; ++g) { for (int a=0; a<=1; ++a) { for (int f=0; f<=1; ++f) { //Shorthands for indexing const int ti = thp_i.ind_[t]; const int wi = wfr_i.ind_[w]; const int gi = gfr_i.ind_[g]; const int ai = alq_i.ind_[a]; const int fi = flo_i.ind_[f]; //Copy element nn[t][w][g][a][f].value = table(ti,wi,gi,ai,fi); } } } } } //Calculate derivatives //Note that the derivative of the two end points of a line aligned with the //"axis of the derivative" are equal for (int i=0; i<=1; ++i) { for (int j=0; j<=1; ++j) { for (int k=0; k<=1; ++k) { for (int l=0; l<=1; ++l) { nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_; nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_; nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_; nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_; nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_; nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp; nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr; nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr; nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq; nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo; } } } } double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t. // Remove dimensions one by one // Example: going from 3D to 2D to 1D, we start by interpolating along // the z axis first, leaving a 2D problem. Then interpolating along the y // axis, leaving a 1D, problem, etc. t2 = flo_i.factor_; t1 = (1.0-t2); for (int t=0; t<=1; ++t) { for (int w=0; w<=1; ++w) { for (int g=0; g<=1; ++g) { for (int a=0; a<=1; ++a) { nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1]; } } } } t2 = alq_i.factor_; t1 = (1.0-t2); for (int t=0; t<=1; ++t) { for (int w=0; w<=1; ++w) { for (int g=0; g<=1; ++g) { nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0]; } } } t2 = gfr_i.factor_; t1 = (1.0-t2); for (int t=0; t<=1; ++t) { for (int w=0; w<=1; ++w) { nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0]; } } t2 = wfr_i.factor_; t1 = (1.0-t2); for (int t=0; t<=1; ++t) { nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0]; } t2 = thp_i.factor_; t1 = (1.0-t2); nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0]; return nn[0][0][0][0][0]; } /** * This basically models interpolate(VFPProdTable::array_type, ...) * which performs 5D interpolation, but here for the 2D case only */ inline VFPEvaluation interpolate( const VFPInjTable& table, const InterpData& flo_i, const InterpData& thp_i) { //Values and derivatives in a 2D plane VFPEvaluation nn[2][2]; //Pick out nearest neighbors (nn) to our evaluation point //The following ladder of for loops will presumably be unrolled by a reasonable compiler. for (int t=0; t<=1; ++t) { for (int f=0; f<=1; ++f) { //Shorthands for indexing const int ti = thp_i.ind_[t]; const int fi = flo_i.ind_[f]; //Copy element nn[t][f].value = table(ti,fi); } } //Calculate derivatives //Note that the derivative of the two end points of a line aligned with the //"axis of the derivative" are equal for (int i=0; i<=1; ++i) { nn[0][i].dthp = (nn[1][i].value - nn[0][i].value) * thp_i.inv_dist_; nn[i][0].dwfr = -1e100; nn[i][0].dgfr = -1e100; nn[i][0].dalq = -1e100; nn[i][0].dflo = (nn[i][1].value - nn[i][0].value) * flo_i.inv_dist_; nn[1][i].dthp = nn[0][i].dthp; nn[i][1].dwfr = nn[i][0].dwfr; nn[i][1].dgfr = nn[i][0].dgfr; nn[i][1].dalq = nn[i][0].dalq; nn[i][1].dflo = nn[i][0].dflo; } double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t. // Go from 2D to 1D t2 = flo_i.factor_; t1 = (1.0-t2); nn[0][0] = t1*nn[0][0] + t2*nn[0][1]; nn[1][0] = t1*nn[1][0] + t2*nn[1][1]; // Go from line to point on line t2 = thp_i.factor_; t1 = (1.0-t2); nn[0][0] = t1*nn[0][0] + t2*nn[1][0]; return nn[0][0]; } inline VFPEvaluation bhp(const VFPProdTable& table, const double& aqua, const double& liquid, const double& vapour, const double& thp, const double& alq) { //Find interpolation variables double flo = detail::getFlo(table, aqua, liquid, vapour); double wfr = detail::getWFR(table, aqua, liquid, vapour); double gfr = detail::getGFR(table, aqua, liquid, vapour); //First, find the values to interpolate between //Recall that flo is negative in Opm, so switch sign. auto flo_i = detail::findInterpData(-flo, table.getFloAxis()); auto thp_i = detail::findInterpData( thp, table.getTHPAxis()); auto wfr_i = detail::findInterpData( wfr, table.getWFRAxis()); auto gfr_i = detail::findInterpData( gfr, table.getGFRAxis()); auto alq_i = detail::findInterpData( alq, table.getALQAxis()); detail::VFPEvaluation retval = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i); return retval; } inline VFPEvaluation bhp(const VFPInjTable& table, const double& aqua, const double& liquid, const double& vapour, const double& thp) { //Find interpolation variables double flo = detail::getFlo(table, aqua, liquid, vapour); //First, find the values to interpolate between auto flo_i = detail::findInterpData(flo, table.getFloAxis()); auto thp_i = detail::findInterpData(thp, table.getTHPAxis()); //Then perform the interpolation itself detail::VFPEvaluation retval = detail::interpolate(table, flo_i, thp_i); return retval; } /** * Returns the table from the map if found, or throws an exception */ template const T& getTable(const std::map> tables, int table_id) { auto entry = tables.find(table_id); if (entry == tables.end()) { OPM_THROW(std::invalid_argument, "Nonexistent VFP table " << table_id << " referenced."); } else { return entry->second.get(); } } /** * Check whether we have a table with the table number */ template bool hasTable(const std::map> tables, int table_id) { const auto entry = tables.find(table_id); return (entry != tables.end() ); } /** * Returns the type variable for FLO/GFR/WFR for production tables */ template TYPE getType(const TABLE& table); template <> inline VFPProdTable::FLO_TYPE getType(const VFPProdTable& table) { return table.getFloType(); } template <> inline VFPProdTable::WFR_TYPE getType(const VFPProdTable& table) { return table.getWFRType(); } template <> inline VFPProdTable::GFR_TYPE getType(const VFPProdTable& table) { return table.getGFRType(); } /** * Returns the type variable for FLO for injection tables */ template <> inline VFPInjTable::FLO_TYPE getType(const VFPInjTable& table) { return table.getFloType(); } /** * Helper function that finds x for a given value of y for a line * *NOTE ORDER OF ARGUMENTS* */ inline double findX(const double& x0, const double& x1, const double& y0, const double& y1, const double& y) { const double dx = x1 - x0; const double dy = y1 - y0; /** * y = y0 + (dy / dx) * (x - x0) * => x = x0 + (y - y0) * (dx / dy) * * If dy is zero, use x1 as the value. */ double x = 0.0; if (dy != 0.0) { x = x0 + (y-y0) * (dx/dy); } else { x = x1; } return x; } /** * This function finds the value of THP given a specific BHP. * Essentially: * Given the function f(thp_array(x)) = bhp_array(x), which is piecewise linear, * find thp so that f(thp) = bhp. */ inline double findTHP( const std::vector& bhp_array, const std::vector& thp_array, double bhp) { int nthp = thp_array.size(); double thp = -1e100; //Check that our thp axis is sorted assert(std::is_sorted(thp_array.begin(), thp_array.end())); /** * Our *interpolated* bhp_array will be montonic increasing for increasing * THP if our input BHP values are monotonic increasing for increasing * THP values. However, if we have to *extrapolate* along any of the other * axes, this guarantee holds no more, and bhp_array may be "random" */ if (std::is_sorted(bhp_array.begin(), bhp_array.end())) { //Target bhp less than all values in array, extrapolate if (bhp <= bhp_array[0]) { //TODO: LOG extrapolation const double& x0 = thp_array[0]; const double& x1 = thp_array[1]; const double& y0 = bhp_array[0]; const double& y1 = bhp_array[1]; thp = detail::findX(x0, x1, y0, y1, bhp); } //Target bhp greater than all values in array, extrapolate else if (bhp > bhp_array[nthp-1]) { //TODO: LOG extrapolation const double& x0 = thp_array[nthp-2]; const double& x1 = thp_array[nthp-1]; const double& y0 = bhp_array[nthp-2]; const double& y1 = bhp_array[nthp-1]; thp = detail::findX(x0, x1, y0, y1, bhp); } //Target bhp within table ranges, interpolate else { //Loop over the values and find min(bhp_array(thp)) == bhp //so that we maximize the rate. //Find i so that bhp_array[i-1] <= bhp <= bhp_array[i]; //Assuming a small number of values in bhp_array, this should be quite //efficient. Other strategies might be bisection, etc. int i=0; bool found = false; for (; i(found); //Silence compiler warning const double& x0 = thp_array[i ]; const double& x1 = thp_array[i+1]; const double& y0 = bhp_array[i ]; const double& y1 = bhp_array[i+1]; thp = detail::findX(x0, x1, y0, y1, bhp); } } //bhp_array not sorted, raw search. else { //Find i so that bhp_array[i-1] <= bhp <= bhp_array[i]; //Since the BHP values might not be sorted, first search within //our interpolation values, and then try to extrapolate. int i=0; bool found = false; for (; i bhp_array[nthp-1]) { //TODO: LOG extrapolation const double& x0 = thp_array[nthp-2]; const double& x1 = thp_array[nthp-1]; const double& y0 = bhp_array[nthp-2]; const double& y1 = bhp_array[nthp-1]; thp = detail::findX(x0, x1, y0, y1, bhp); } else { OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array"); } } return thp; } // a data type use to do the intersection calculation to get the intial bhp under THP control struct RateBhpPair { double rate; double bhp; }; // looking for a intersection point a line segment and a line, they are both defined with two points // it is copied from #include , which should be removed since it is only required by the lagacy polymer inline bool findIntersection(const std::array& line_segment, const std::array& line, double& bhp) { const double x1 = line_segment[0].rate; const double y1 = line_segment[0].bhp; const double x2 = line_segment[1].rate; const double y2 = line_segment[1].bhp; const double x3 = line[0].rate; const double y3 = line[0].bhp; const double x4 = line[1].rate; const double y4 = line[1].bhp; const double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); if (d == 0.) { return false; } const double x = ((x3 - x4) * (x1 * y2 - y1 * x2) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d; const double y = ((y3 - y4) * (x1 * y2 - y1 * x2) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d; if (x >= std::min(x1,x2) && x <= std::max(x1,x2)) { bhp = y; return true; } else { return false; } } // calculating the BHP from thp through the intersection of VFP curves and inflow performance relationship inline bool findIntersectionForBhp(const std::vector& ratebhp_samples, const std::array& ratebhp_twopoints_ipr, double& obtained_bhp) { // there possibly two intersection point, then we choose the one corresponding with the bigger rate const double bhp1 = ratebhp_twopoints_ipr[0].bhp; const double rate1 = ratebhp_twopoints_ipr[0].rate; const double bhp2 = ratebhp_twopoints_ipr[1].bhp; const double rate2 = ratebhp_twopoints_ipr[1].rate; assert(rate1 != rate2); const double line_slope = (bhp2 - bhp1) / (rate2 - rate1); // line equation will be // bhp - bhp1 - line_slope * (flo_rate - flo_rate1) = 0 auto flambda = [&](const double flo_rate, const double bhp) { return bhp - bhp1 - line_slope * (flo_rate - rate1); }; int number_intersection_found = 0; int index_segment = 0; // the intersection segment that intersection happens const size_t num_samples = ratebhp_samples.size(); for (size_t i = 0; i < num_samples - 1; ++i) { const double temp1 = flambda(ratebhp_samples[i].rate, ratebhp_samples[i].bhp); const double temp2 = flambda(ratebhp_samples[i+1].rate, ratebhp_samples[i+1].bhp); if (temp1 * temp2 <= 0.) { // intersection happens // in theory there should be maximum two intersection points // while considering the situation == 0. here, we might find more // we always use the last one, which is the one corresponds to the biggest rate, // which we assume is the more stable one ++number_intersection_found; index_segment = i; } } if (number_intersection_found == 0) { // there is not intersection point return false; } // then we pick the segment from the VFP curve to do the line intersection calculation const std::array line_segment{ ratebhp_samples[index_segment], ratebhp_samples[index_segment + 1] }; const bool intersection_found = findIntersection(line_segment, ratebhp_twopoints_ipr, obtained_bhp); return intersection_found; } } // namespace detail } // namespace #endif /* OPM_AUTODIFF_VFPHELPERS_HPP_ */