// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* Copyright 2024 SINTEF Digital This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::FlowProblemComp */ #ifndef OPM_FLOW_PROBLEM_COMP_HPP #define OPM_FLOW_PROBLEM_COMP_HPP #include #include #include #include #include #include #include #include #include #include namespace Opm { /*! * \ingroup CompositionalSimulator * * \brief This problem simulates an input file given in the data format used by the * commercial ECLiPSE simulator. */ template class FlowProblemComp : public FlowProblem { // TODO: the naming of the Types will be adjusted using FlowProblemType = FlowProblem; using typename FlowProblemType::Scalar; using typename FlowProblemType::Simulator; using typename FlowProblemType::GridView; using typename FlowProblemType::FluidSystem; using typename FlowProblemType::Vanguard; // might not be needed using FlowProblemType::dim; using FlowProblemType::dimWorld; using FlowProblemType::numPhases; using FlowProblemType::numComponents; using FlowProblemType::gasPhaseIdx; using FlowProblemType::oilPhaseIdx; using FlowProblemType::waterPhaseIdx; using typename FlowProblemType::Indices; using typename FlowProblemType::PrimaryVariables; using BoundaryRateVector = GetPropType; using typename FlowProblemType::Evaluation; using typename FlowProblemType::MaterialLaw; using typename FlowProblemType::RateVector; using InitialFluidState = CompositionalFluidState; using EclWriterType = EclWriter >; public: using FlowProblemType::porosity; using FlowProblemType::pvtRegionIndex; /*! * \copydoc FvBaseProblem::registerParameters */ static void registerParameters() { FlowProblemType::registerParameters(); EclWriterType::registerParameters(); // tighter tolerance is needed for compositional modeling here Parameters::SetDefault>(1e-7); } /*! * \copydoc Doxygen::defaultProblemConstructor */ explicit FlowProblemComp(Simulator& simulator) : FlowProblemType(simulator) , thresholdPressures_(simulator) { eclWriter_ = std::make_unique(simulator); enableEclOutput_ = Parameters::Get(); } /*! * \copydoc FvBaseProblem::finishInit */ void finishInit() { // TODO: there should be room to remove duplication for this function, // but there is relatively complicated logic in the function calls in this function // some refactoring is needed for this function FlowProblemType::finishInit(); auto& simulator = this->simulator(); auto finishTransmissibilities = [updated = false, this]() mutable { if (updated) { return; } this->transmissibilities_.finishInit( [&vg = this->simulator().vanguard()](const unsigned int it) { return vg.gridIdxToEquilGridIdx(it); }); updated = true; }; // TODO: we might need to do the same with FlowProblemBlackoil for parallel finishTransmissibilities(); if (enableEclOutput_) { eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities()); std::function equilGridToGrid = [&simulator](unsigned int i) { return simulator.vanguard().gridEquilIdxToGridIdx(i); }; eclWriter_->extractOutputTransAndNNC(equilGridToGrid); } const auto& eclState = simulator.vanguard().eclState(); const auto& schedule = simulator.vanguard().schedule(); // Set the start time of the simulation simulator.setStartTime(schedule.getStartTime()); simulator.setEndTime(schedule.simTime(schedule.size() - 1)); // We want the episode index to be the same as the report step index to make // things simpler, so we have to set the episode index to -1 because it is // incremented by endEpisode(). The size of the initial time step and // length of the initial episode is set to zero for the same reason. simulator.setEpisodeIndex(-1); simulator.setEpisodeLength(0.0); // the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false // disables gravity, else the standard value of the gravity constant at sea level // on earth is used this->gravity_ = 0.0; if (Parameters::Get()) this->gravity_[dim - 1] = 9.80665; if (!eclState.getInitConfig().hasGravity()) this->gravity_[dim - 1] = 0.0; if (this->enableTuning_) { // if support for the TUNING keyword is enabled, we get the initial time // steping parameters from it instead of from command line parameters const auto& tuning = schedule[0].tuning(); this->initialTimeStepSize_ = tuning.TSINIT.has_value() ? tuning.TSINIT.value() : -1.0; this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC; } this->initFluidSystem_(); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { this->maxOilSaturation_.resize(this->model().numGridDof(), 0.0); } this->readRockParameters_(simulator.vanguard().cellCenterDepths(), [&simulator](const unsigned idx) { std::array coords; simulator.vanguard().cartesianCoordinate(idx, coords); for (auto& c : coords) { ++c; } return coords; }); FlowProblemType::readMaterialParameters_(); FlowProblemType::readThermalParameters_(); // write the static output files (EGRID, INIT) if (enableEclOutput_) { eclWriter_->writeInit(); } const auto& initconfig = eclState.getInitConfig(); if (initconfig.restartRequested()) readEclRestartSolution_(); else this->readInitialCondition_(); FlowProblemType::updatePffDofData_(); if constexpr (getPropValue()) { const auto& vanguard = this->simulator().vanguard(); const auto& gridView = vanguard.gridView(); int numElements = gridView.size(/*codim=*/0); this->polymer_.maxAdsorption.resize(numElements, 0.0); } /* readBoundaryConditions_(); // compute and set eq weights based on initial b values computeAndSetEqWeights_(); if (enableDriftCompensation_) { drift_.resize(this->model().numGridDof()); drift_ = 0.0; } */ // TODO: check wether the following can work with compostional if (enableVtkOutput_ && eclState.getIOConfig().initOnly()) { simulator.setTimeStepSize(0.0); FlowProblemType::writeOutput(true); } // after finishing the initialization and writing the initial solution, we move // to the first "real" episode/report step // for restart the episode index and start is already set if (!initconfig.restartRequested()) { simulator.startNextEpisode(schedule.seconds(1)); simulator.setEpisodeIndex(0); simulator.setTimeStepIndex(0); } } /*! * \brief Called by the simulator after each time integration. */ void endTimeStep() override { FlowProblemType::endTimeStep(); const bool isSubStep = !this->simulator().episodeWillBeOver(); // after the solution is updated, the values in output module needs also updated this->eclWriter_->mutableOutputModule().invalidateLocalData(); // For CpGrid with LGRs, ecl/vtk output is not supported yet. const auto& grid = this->simulator().vanguard().gridView().grid(); using GridType = std::remove_cv_t>; constexpr bool isCpGrid = std::is_same_v; if (!isCpGrid || (grid.maxLevel() == 0)) { this->eclWriter_->evalSummaryState(isSubStep); } } void writeReports(const SimulatorTimer& timer) { if (enableEclOutput_){ eclWriter_->writeReports(timer); } } /*! * \brief Write the requested quantities of the current solution into the output * files. */ void writeOutput(bool verbose) override { FlowProblemType::writeOutput(verbose); const bool isSubStep = !this->simulator().episodeWillBeOver(); data::Solution localCellData = {}; if (enableEclOutput_) { if (Parameters::Get() || !isSubStep) { eclWriter_->writeOutput(std::move(localCellData), isSubStep); } } } /*! * \copydoc FvBaseProblem::boundary * * Reservoir simulation uses no-flow conditions as default for all boundaries. */ template void boundary(BoundaryRateVector& values, const Context& context, unsigned spaceIdx, unsigned /* timeIdx */) const { OPM_TIMEBLOCK_LOCAL(eclProblemBoundary); if (!context.intersection(spaceIdx).boundary()) return; values.setNoFlow(); if (this->nonTrivialBoundaryConditions()) { throw std::logic_error("boundary condition is not supported by compostional modeling yet"); } } /*! * \copydoc FvBaseProblem::initial * * The reservoir problem uses a constant boundary condition for * the whole domain. */ template void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx); const auto& initial_fs = initialFluidStates_[globalDofIdx]; Opm::CompositionalFluidState fs; // TODO: the current approach is assuming we begin with XMF and YMF. // TODO: maybe we should make it begin with ZMF using ComponentVector = Dune::FieldVector; for (unsigned p = 0; p < numPhases; ++p) { // TODO: assuming the phaseidx continuous ComponentVector vals; auto& last_eval = vals[numComponents - 1]; last_eval = 1.; for (unsigned c = 0; c < numComponents - 1; ++c) { const auto val = initial_fs.moleFraction(p, c); vals[c] = val; last_eval -= val; } for (unsigned c = 0; c < numComponents; ++c) { fs.setMoleFraction(p, c, vals[c]); } // pressure const auto p_val = initial_fs.pressure(p); fs.setPressure(p, p_val); const auto sat_val = initial_fs.saturation(p); fs.setSaturation(p, sat_val); const auto temp_val = initial_fs.temperature(p); fs.setTemperature(temp_val); } { typename FluidSystem::template ParameterCache paramCache; paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx); paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx); fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx)); fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx)); fs.setViscosity(FluidSystem::oilPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::oilPhaseIdx)); fs.setViscosity(FluidSystem::gasPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::gasPhaseIdx)); } // determine the component fractions Dune::FieldVector z(0.0); Scalar sumMoles = 0.0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { Scalar tmp = Opm::getValue(fs.molarity(phaseIdx, compIdx) * fs.saturation(phaseIdx)); z[compIdx] += Opm::max(tmp, 1e-8); sumMoles += tmp; } } z /= sumMoles; // Set initial K and L for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { const auto& Ktmp = fs.wilsonK_(compIdx); fs.setKvalue(compIdx, Ktmp); } for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) { fs.setMoleFraction(compIdx, z[compIdx]); } const Scalar& Ltmp = -1.0; fs.setLvalue(Ltmp); values.assignNaive(fs); } void addToSourceDense(RateVector&, unsigned, unsigned) const override { // we do nothing for now } const InitialFluidState& initialFluidState(unsigned globalDofIdx) const { return initialFluidStates_[globalDofIdx]; } std::vector& initialFluidStates() { return initialFluidStates_; } const std::vector& initialFluidStates() const { return initialFluidStates_; } const FlowThresholdPressure& thresholdPressure() const { assert( !thresholdPressures_.enableThresholdPressure() && " Threshold Pressures are not supported by compostional simulation "); return thresholdPressures_; } // TODO: do we need this one? template void serializeOp(Serializer& serializer) { serializer(static_cast(*this)); serializer(*eclWriter_); } protected: void updateExplicitQuantities_(int /* episodeIdx*/, int /* timeStepSize */, bool /* first_step_after_restart */) override { // we do nothing here for now } void readEquilInitialCondition_() override { throw std::logic_error("Equilibration is not supported by compositional modeling yet"); } void readEclRestartSolution_() { throw std::logic_error("Restarting is not supported by compositional modeling yet"); } void readExplicitInitialCondition_() override { readExplicitInitialConditionCompositional_(); } void readExplicitInitialConditionCompositional_() { const auto& simulator = this->simulator(); const auto& vanguard = simulator.vanguard(); const auto& eclState = vanguard.eclState(); const auto& fp = eclState.fieldProps(); const bool has_pressure = fp.has_double("PRESSURE"); if (!has_pressure) throw std::runtime_error("The ECL input file requires the presence of the PRESSURE " "keyword if the model is initialized explicitly"); const bool has_xmf = fp.has_double("XMF"); const bool has_ymf = fp.has_double("YMF"); const bool has_zmf = fp.has_double("ZMF"); if ( !has_zmf && !(has_xmf && has_ymf) ) { throw std::runtime_error("The ECL input file requires the presence of ZMF or XMF and YMF " "keyword if the model is initialized explicitly"); } if (has_zmf && (has_xmf || has_ymf)) { throw std::runtime_error("The ECL input file can not handle explicit initialization " "with both ZMF and XMF or YMF"); } if (has_xmf != has_ymf) { throw std::runtime_error("The ECL input file needs XMF and YMF combined to do the explicit " "initializtion when using XMF or YMF"); } const bool has_temp = fp.has_double("TEMPI"); // const bool has_gas = fp.has_double("SGAS"); assert(fp.has_double("SGAS")); std::size_t numDof = this->model().numGridDof(); initialFluidStates_.resize(numDof); std::vector waterSaturationData; std::vector gasSaturationData; std::vector soilData; std::vector pressureData; std::vector tempiData; const bool water_active = FluidSystem::phaseIsActive(waterPhaseIdx); const bool gas_active = FluidSystem::phaseIsActive(gasPhaseIdx); const bool oil_active = FluidSystem::phaseIsActive(oilPhaseIdx); if (water_active && Indices::numPhases > 1) waterSaturationData = fp.get_double("SWAT"); else waterSaturationData.resize(numDof); pressureData = fp.get_double("PRESSURE"); if (has_temp) { tempiData = fp.get_double("TEMPI"); } else { ; // TODO: throw? } if (gas_active) // && FluidSystem::phaseIsActive(oilPhaseIdx)) gasSaturationData = fp.get_double("SGAS"); else gasSaturationData.resize(numDof); for (std::size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) { auto& dofFluidState = initialFluidStates_[dofIdx]; // dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx)); Scalar temperatureLoc = tempiData[dofIdx]; assert(std::isfinite(temperatureLoc) && temperatureLoc > 0); dofFluidState.setTemperature(temperatureLoc); if (gas_active) { dofFluidState.setSaturation(FluidSystem::gasPhaseIdx, gasSaturationData[dofIdx]); } if (oil_active) { dofFluidState.setSaturation(FluidSystem::oilPhaseIdx, 1.0 - waterSaturationData[dofIdx] - gasSaturationData[dofIdx]); } ////// // set phase pressures ////// const Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase) // TODO: zero capillary pressure for now const std::array pc = {0}; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; if (Indices::oilEnabled) dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx])); else if (Indices::gasEnabled) dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx])); else if (Indices::waterEnabled) // single (water) phase dofFluidState.setPressure(phaseIdx, pressure); } if (has_xmf && has_ymf) { const auto& xmfData = fp.get_double("XMF"); const auto& ymfData = fp.get_double("YMF"); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { const std::size_t data_idx = compIdx * numDof + dofIdx; const Scalar xmf = xmfData[data_idx]; const Scalar ymf = ymfData[data_idx]; dofFluidState.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, xmf); dofFluidState.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, ymf); } } if (has_zmf) { const auto& zmfData = fp.get_double("ZMF"); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { const std::size_t data_idx = compIdx * numDof + dofIdx; const Scalar zmf = zmfData[data_idx]; dofFluidState.setMoleFraction(compIdx, zmf); if (gas_active) { const auto ymf = (dofFluidState.saturation(FluidSystem::gasPhaseIdx) > 0.) ? zmf : Scalar{0}; dofFluidState.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, ymf); } if (oil_active) { const auto xmf = (dofFluidState.saturation(FluidSystem::oilPhaseIdx) > 0.) ? zmf : Scalar{0}; dofFluidState.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, xmf); } } } } } private: void handleSolventBC(const BCProp::BCFace& /* bc */, RateVector& /* rate */) const override { throw std::logic_error("solvent is disabled for compositional modeling and you're trying to add solvent to BC"); } void handlePolymerBC(const BCProp::BCFace& /* bc */, RateVector& /* rate */) const override { throw std::logic_error("polymer is disabled for compositional modeling and you're trying to add polymer to BC"); } FlowThresholdPressure thresholdPressures_; std::vector initialFluidStates_; bool enableEclOutput_; std::unique_ptr eclWriter_; bool enableVtkOutput_; }; } // namespace Opm #endif // OPM_FLOW_PROBLEM_COMP_HPP