// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::ImmiscibleLocalResidual */ #ifndef EWOMS_IMMISCIBLE_LOCAL_RESIDUAL_BASE_HH #define EWOMS_IMMISCIBLE_LOCAL_RESIDUAL_BASE_HH #include "immiscibleproperties.hh" #include #include namespace Opm { /*! * \ingroup ImmiscibleModel * * \brief Calculates the local residual of the immiscible multi-phase * model. */ template class ImmiscibleLocalResidual : public GetPropType { using Implementation = GetPropType; using Evaluation = GetPropType; using IntensiveQuantities = GetPropType; using ExtensiveQuantities = GetPropType; using ElementContext = GetPropType; using FluidSystem = GetPropType; using Indices = GetPropType; using EqVector = GetPropType; using RateVector = GetPropType; enum { conti0EqIdx = Indices::conti0EqIdx }; enum { numEq = getPropValue() }; enum { numPhases = getPropValue() }; enum { enableEnergy = getPropValue() }; using EnergyModule = Opm::EnergyModule; using Toolbox = Opm::MathToolbox; public: /*! * \brief Adds the amount all conservation quantities (e.g. phase * mass) within a single fluid phase * * \copydetails Doxygen::storageParam * \copydetails Doxygen::dofCtxParams * \copydetails Doxygen::phaseIdxParam */ template void addPhaseStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx, unsigned phaseIdx) const { // retrieve the intensive quantities for the SCV at the specified // point in time const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx); const auto& fs = intQuants.fluidState(); storage[conti0EqIdx + phaseIdx] = Toolbox::template decay(intQuants.porosity()) * Toolbox::template decay(fs.saturation(phaseIdx)) * Toolbox::template decay(fs.density(phaseIdx)); EnergyModule::addPhaseStorage(storage, intQuants, phaseIdx); } /*! * \copydoc FvBaseLocalResidual::computeStorage */ template void computeStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { storage = 0.0; for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) asImp_().addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx); EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx)); } /*! * \copydoc FvBaseLocalResidual::computeFlux */ void computeFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { flux = 0.0; asImp_().addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx); asImp_().addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \brief Add the advective mass flux at a given flux integration point * * \copydetails computeFlux */ void addAdvectiveFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); //////// // advective fluxes of all components in all phases //////// unsigned focusDofIdx = elemCtx.focusDofIndex(); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { // data attached to upstream DOF of the current phase. unsigned upIdx = static_cast(extQuants.upstreamIndex(phaseIdx)); const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0); // add advective flux of current component in current phase. const Evaluation& rho = up.fluidState().density(phaseIdx); if (focusDofIdx == upIdx) flux[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*rho; else flux[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*Toolbox::value(rho); } EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \brief Adds the diffusive flux at a given flux integration point. * * For the immiscible model, this is a no-op for mass fluxes. For energy it adds the * contribution of thermal conduction to the enthalpy flux. * * \copydetails computeFlux */ void addDiffusiveFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { // no diffusive mass fluxes for the immiscible model // thermal conduction EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); } /*! * \copydoc FvBaseLocalResidual::computeSource * * By default, this method only asks the problem to specify a * source term. */ void computeSource(RateVector& source, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { Opm::Valgrind::SetUndefined(source); elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx); Opm::Valgrind::CheckDefined(source); } private: const Implementation& asImp_() const { return *static_cast(this); } }; } // namespace Opm #endif