// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { std::string EclString(Opm::Inplace::Phase phase) { switch(phase) { case Opm::Inplace::Phase::WATER: return "WIP"; case Opm::Inplace::Phase::OIL: return "OIP"; case Opm::Inplace::Phase::GAS: return "GIP"; case Opm::Inplace::Phase::OilInLiquidPhase: return "OIPL"; case Opm::Inplace::Phase::OilInGasPhase: return "OIPG"; case Opm::Inplace::Phase::GasInLiquidPhase: return "GIPL"; case Opm::Inplace::Phase::GasInGasPhase: return "GIPG"; case Opm::Inplace::Phase::PoreVolume: return "RPV"; default: throw std::logic_error("Phase not recognized"); } } } namespace Opm { template EclGenericOutputBlackoilModule:: EclGenericOutputBlackoilModule(const EclipseState& eclState, const Schedule& schedule, const SummaryConfig& summaryConfig, const SummaryState& summaryState, bool enableEnergy, bool enableTemperature, bool enableSolvent, bool enablePolymer, bool enableFoam, bool enableBrine, bool enableExtbo) : eclState_(eclState) , schedule_(schedule) , summaryConfig_(summaryConfig) , summaryState_(summaryState) , enableEnergy_(enableEnergy) , enableTemperature_(enableTemperature) , enableSolvent_(enableSolvent) , enablePolymer_(enablePolymer) , enableFoam_(enableFoam) , enableBrine_(enableBrine) , enableExtbo_(enableExtbo) { const auto& fp = eclState_.fieldProps(); this->regions_["FIPNUM"] = fp.get_int("FIPNUM"); for (const auto& region : summaryConfig_.fip_regions()) this->regions_[region] = fp.get_int(region); this->RPRNodes_ = summaryConfig_.keywords("RPR*"); this->RPRPNodes_ = summaryConfig_.keywords("RPRP*"); for (const auto& phase : Inplace::phases()) { std::string key_pattern = "R" + EclString(phase) + "*"; this->regionNodes_[phase] = summaryConfig_.keywords(key_pattern); } } template void EclGenericOutputBlackoilModule:: outputCumLog(size_t reportStepNum, const bool substep, bool forceDisableCumOutput) { if (!substep) { ScalarBuffer tmp_values(WellCumDataType::numWCValues, 0.0); StringBuffer tmp_names(WellCumDataType::numWCNames, ""); outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput); const auto& st = summaryState_; for (const auto& gname: schedule_.groupNames()) { auto gName = static_cast(gname); auto get = [&st, &gName](const std::string& vector) { const auto key = vector + ':' + gName; return st.has(key) ? st.get(key) : 0.0; }; tmp_names[0] = gname; tmp_values[2] = get("GOPT"); //WellCumDataType::OilProd tmp_values[3] = get("GWPT"); //WellCumDataType::WaterProd tmp_values[4] = get("GGPT"); //WellCumDataType::GasProd tmp_values[5] = get("GVPT");//WellCumDataType::FluidResVolProd tmp_values[6] = get("GOIT"); //WellCumDataType::OilInj tmp_values[7] = get("GWIT"); //WellCumDataType::WaterInj tmp_values[8] = get("GGIT"); //WellCumDataType::GasInj tmp_values[9] = get("GVIT");//WellCumDataType::FluidResVolInj outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput); } for (const auto& wname : schedule_.wellNames(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(wname)) { continue; } const auto& well = schedule_.getWell(wname, reportStepNum); tmp_names[0] = wname; //WellCumDataType::WellName auto wName = static_cast(wname); auto get = [&st, &wName](const std::string& vector) { const auto key = vector + ':' + wName; return st.has(key) ? st.get(key) : 0.0; }; if (well.isInjector()) { const auto& controls = well.injectionControls(st); const auto ctlMode = controls.cmode; const auto injType = controls.injector_type; using CMode = ::Opm::Well::InjectorCMode; using WType = ::Opm::InjectorType; auto ftype = [](const auto wtype) -> std::string { switch (wtype) { case WType::OIL: return "Oil"; case WType::WATER: return "Wat"; case WType::GAS: return "Gas"; case WType::MULTI: return "Multi"; default: { return ""; } } }; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::RATE: return "RATE"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::GRUP: return "GRUP"; default: { return ""; } } }; tmp_names[1] = "INJ"; //WellCumDataType::WellType const auto flowctl = fctl(ctlMode); if (flowctl == "RATE") //WellCumDataType::WellCTRL { const auto flowtype = ftype(injType); if(flowtype == "Oil"){ tmp_names[2] = "ORAT"; } else if(flowtype == "Wat"){ tmp_names[2] = "WRAT"; } else if(flowtype == "Gas"){ tmp_names[2] = "GRAT"; } } else { tmp_names[2] = flowctl; } } else if (well.isProducer()) { const auto& controls = well.productionControls(st); using CMode = ::Opm::Well::ProducerCMode; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::ORAT: return "ORAT"; case CMode::WRAT: return "WRAT"; case CMode::GRAT: return "GRAT"; case CMode::LRAT: return "LRAT"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::CRAT: return "CRAT"; case CMode::GRUP: return "GRUP"; default: { return "none"; } } }; tmp_names[1] = "PROD"; //WellProdDataType::CTRLMode tmp_names[2] = fctl(controls.cmode); //WellProdDataType::CTRLMode } tmp_values[0] = well.getHeadI() + 1; //WellCumDataType::wellLocationi tmp_values[1] = well.getHeadJ() + 1; //WellCumDataType::wellLocationj tmp_values[2] = get("WOPT"); //WellCumDataType::OilProd tmp_values[3] = get("WWPT"); //WellCumDataType::WaterProd tmp_values[4] = get("WGPT"); //WellCumDataType::GasProd tmp_values[5] = get("WVPT");//WellCumDataType::FluidResVolProd tmp_values[6] = get("WOIT"); //WellCumDataType::OilInj tmp_values[7] = get("WWIT"); //WellCumDataType::WaterInj tmp_values[8] = get("WGIT"); //WellCumDataType::GasInj tmp_values[9] = get("WVIT");//WellCumDataType::FluidResVolInj outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput); } } } template void EclGenericOutputBlackoilModule:: outputProdLog(size_t reportStepNum, const bool substep, bool forceDisableProdOutput) { if (!substep) { ScalarBuffer tmp_values(WellProdDataType::numWPValues, 0.0); StringBuffer tmp_names(WellProdDataType::numWPNames, ""); outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput); const auto& st = summaryState_; for (const auto& gname: schedule_.groupNames()) { auto gName = static_cast(gname); auto get = [&st, &gName](const std::string& vector) { const auto key = vector + ':' + gName; return st.has(key) ? st.get(key) : 0.0; }; tmp_names[0] = gname; tmp_values[2] = get("GOPR"); //WellProdDataType::OilRate tmp_values[3] = get("GWPR"); //WellProdDataType::WaterRate tmp_values[4] = get("GGPR"); //WellProdDataType::GasRate tmp_values[5] = get("GVPR"); //WellProdDataType::FluidResVol tmp_values[6] = get("GWCT"); //WellProdDataType::WaterCut tmp_values[7] = get("GGOR"); //WellProdDataType::GasOilRatio tmp_values[8] = get("GWPR")/get("GGPR"); //WellProdDataType::WaterGasRatio outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput); } for (const auto& wname: schedule_.wellNames(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(wname)) { continue; } const auto& well = schedule_.getWell(wname, reportStepNum); // Ignore injector wells if (well.isInjector()){ continue; } tmp_names[0] = wname;//WellProdDataType::WellName auto wName = static_cast(wname); auto get = [&st, &wName](const std::string& vector) { const auto key = vector + ':' + wName; return st.has(key) ? st.get(key) : 0.0; }; const auto& controls = well.productionControls(st); using CMode = Well::ProducerCMode; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::ORAT: return "ORAT"; case CMode::WRAT: return "WRAT"; case CMode::GRAT: return "GRAT"; case CMode::LRAT: return "LRAT"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::CRAT: return "CRate"; case CMode::GRUP: return "GRUP"; default: { return "none"; } } }; tmp_names[1] = fctl(controls.cmode); //WellProdDataType::CTRLMode tmp_values[0] = well.getHeadI() + 1;//WellProdDataType::WellLocationi tmp_values[1] = well.getHeadJ() + 1;//WellProdDataType::WellLocationj tmp_values[2] = get("WOPR"); //WellProdDataType::OilRate tmp_values[3] = get("WWPR"); //WellProdDataType::WaterRate tmp_values[4] = get("WGPR"); //WellProdDataType::GasRate tmp_values[5] = get("WVPR"); //WellProdDataType::FluidResVol tmp_values[6] = get("WWCT"); //WellProdDataType::WaterCut tmp_values[7] = get("WGOR"); //WellProdDataType::GasOilRatio tmp_values[8] = get("WWPR")/get("WGPR"); //WellProdDataType::WaterGasRatio tmp_values[9] = get("WBHP"); //WellProdDataType::BHP tmp_values[10] = get("WTHP"); //WellProdDataType::THP //tmp_values[11] = 0; //WellProdDataType::SteadyStatePI // outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput); } } } template void EclGenericOutputBlackoilModule:: outputInjLog(size_t reportStepNum, const bool substep, bool forceDisableInjOutput) { if (!substep) { ScalarBuffer tmp_values(WellInjDataType::numWIValues, 0.0); StringBuffer tmp_names(WellInjDataType::numWINames, ""); outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput); const auto& st = summaryState_; for (const auto& gname: schedule_.groupNames()) { auto gName = static_cast(gname); auto get = [&st, &gName](const std::string& vector) { const auto key = vector + ':' + gName; return st.has(key) ? st.get(key) : 0.0; }; tmp_names[0] = gname; tmp_values[2] = get("GOIR");//WellInjDataType::OilRate tmp_values[3] = get("GWIR"); //WellInjDataType::WaterRate tmp_values[4] = get("GGIR"); //WellInjDataType::GasRate tmp_values[5] = get("GVIR");//WellInjDataType::FluidResVol outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput); } for (const auto& wname: schedule_.wellNames(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(wname)) { continue; } const auto& well = schedule_.getWell(wname, reportStepNum); // Ignore Producer wells if (well.isProducer()){ continue; } tmp_names[0] = wname; //WellInjDataType::WellName auto wName = static_cast(wname); auto get = [&st, &wName](const std::string& vector) { const auto key = vector + ':' + wName; return st.has(key) ? st.get(key) : 0.0; }; const auto& controls = well.injectionControls(st); const auto ctlMode = controls.cmode; const auto injType = controls.injector_type; using CMode = Well::InjectorCMode; using WType = InjectorType; auto ftype = [](const auto wtype) -> std::string { switch (wtype) { case WType::OIL: return "Oil"; case WType::WATER: return "Wat"; case WType::GAS: return "Gas"; case WType::MULTI: return "Multi"; default: { return ""; } } }; auto fctl = [](const auto wmctl) -> std::string { switch (wmctl) { case CMode::RATE: return "RATE"; case CMode::RESV: return "RESV"; case CMode::THP: return "THP"; case CMode::BHP: return "BHP"; case CMode::GRUP: return "GRUP"; default: { return ""; } } }; const auto flowtype = ftype(injType); const auto flowctl = fctl(ctlMode); if(flowtype == "Oil") //WellInjDataType::CTRLModeOil { if (flowctl == "RATE"){ tmp_names[1] = "ORAT"; } else { tmp_names[1] = flowctl; } } else if (flowtype == "Wat") //WellInjDataType::CTRLModeWat { if (flowctl == "RATE"){ tmp_names[3] = "WRAT"; } else { tmp_names[2] = flowctl; } } else if (flowtype == "Gas") //WellInjDataType::CTRLModeGas { if (flowctl == "RATE"){ tmp_names[3] = "GRAT"; } else { tmp_names[3] = flowctl; } } tmp_values[0] = well.getHeadI() + 1; //WellInjDataType::wellLocationi tmp_values[1] = well.getHeadJ() + 1; //WellInjDataType::wellLocationj tmp_values[2] = get("WOIR"); //WellInjDataType::OilRate tmp_values[3] = get("WWIR"); //WellInjDataType::WaterRate tmp_values[4] = get("WGIR"); //WellInjDataType::GasRate tmp_values[5] = get("WVIR");//WellInjDataType::FluidResVol tmp_values[6] = get("WBHP"); //WellInjDataType::BHP tmp_values[7] = get("WTHP"); //WellInjDataType::THP //tmp_values[8] = 0; //WellInjDataType::SteadyStateII outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput); } } } template Inplace EclGenericOutputBlackoilModule:: outputFipLog(std::map& miscSummaryData, std::map>& regionData, const bool substep, const Comm& comm) { auto inplace = this->accumulateRegionSums(comm); if (comm.rank() != 0) return inplace; updateSummaryRegionValues(inplace, miscSummaryData, regionData); if (!substep) outputFipLogImpl(inplace); return inplace; } template void EclGenericOutputBlackoilModule:: addRftDataToWells(data::Wells& wellDatas, size_t reportStepNum) { const auto& rft_config = schedule_[reportStepNum].rft_config(); for (const auto& well: schedule_.getWells(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(well.name())) { continue; } //add data infrastructure for shut wells if (!wellDatas.count(well.name())) { data::Well wellData; if (!rft_config.active()) continue; wellData.connections.resize(well.getConnections().size()); size_t count = 0; for (const auto& connection: well.getConnections()) { const size_t i = size_t(connection.getI()); const size_t j = size_t(connection.getJ()); const size_t k = size_t(connection.getK()); const size_t index = eclState_.gridDims().getGlobalIndex(i, j, k); auto& connectionData = wellData.connections[count]; connectionData.index = index; count++; } wellDatas.emplace(std::make_pair(well.name(), wellData)); } data::Well& wellData = wellDatas.at(well.name()); for (auto& connectionData: wellData.connections) { const auto index = connectionData.index; if (oilConnectionPressures_.count(index) > 0) connectionData.cell_pressure = oilConnectionPressures_.at(index); if (waterConnectionSaturations_.count(index) > 0) connectionData.cell_saturation_water = waterConnectionSaturations_.at(index); if (gasConnectionSaturations_.count(index) > 0) connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index); } } oilConnectionPressures_.clear(); waterConnectionSaturations_.clear(); gasConnectionSaturations_.clear(); } template void EclGenericOutputBlackoilModule:: assignToSolution(data::Solution& sol) { if (!oilPressure_.empty()) { sol.insert("PRESSURE", UnitSystem::measure::pressure, std::move(oilPressure_), data::TargetType::RESTART_SOLUTION); } if (!temperature_.empty()) { if (enableEnergy_) sol.insert("TEMP", UnitSystem::measure::temperature, std::move(temperature_), data::TargetType::RESTART_SOLUTION); else { // Flow allows for initializing of non-constant initial temperature. // For output of this temperature for visualization and restart set --enable-opm-restart=true assert(enableTemperature_); sol.insert("TEMP", UnitSystem::measure::temperature, std::move(temperature_), data::TargetType::RESTART_AUXILIARY); } } if (FluidSystem::phaseIsActive(waterPhaseIdx) && !saturation_[waterPhaseIdx].empty()) { sol.insert("SWAT", UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), data::TargetType::RESTART_SOLUTION); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && !saturation_[gasPhaseIdx].empty()) { sol.insert("SGAS", UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), data::TargetType::RESTART_SOLUTION); } if (!ppcw_.empty()) { sol.insert ("PPCW", UnitSystem::measure::pressure, std::move(ppcw_), data::TargetType::RESTART_SOLUTION); } if (!gasDissolutionFactor_.empty()) { sol.insert("RSSAT", UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), data::TargetType::RESTART_AUXILIARY); } if (!oilVaporizationFactor_.empty()) { sol.insert("RVSAT", UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), data::TargetType::RESTART_AUXILIARY); } if (!rs_.empty()) { sol.insert("RS", UnitSystem::measure::gas_oil_ratio, std::move(rs_), data::TargetType::RESTART_SOLUTION); } if (!rv_.empty()) { sol.insert("RV", UnitSystem::measure::oil_gas_ratio, std::move(rv_), data::TargetType::RESTART_SOLUTION); } if (!invB_[waterPhaseIdx].empty()) { sol.insert("1OVERBW", UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!invB_[oilPhaseIdx].empty()) { sol.insert("1OVERBO", UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!invB_[gasPhaseIdx].empty()) { sol.insert("1OVERBG", UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!density_[waterPhaseIdx].empty()) { sol.insert("WAT_DEN", UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!density_[oilPhaseIdx].empty()) { sol.insert("OIL_DEN", UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!density_[gasPhaseIdx].empty()) { sol.insert("GAS_DEN", UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!viscosity_[waterPhaseIdx].empty()) { sol.insert("WAT_VISC", UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!viscosity_[oilPhaseIdx].empty()) { sol.insert("OIL_VISC", UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!viscosity_[gasPhaseIdx].empty()) { sol.insert("GAS_VISC", UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!relativePermeability_[waterPhaseIdx].empty()) { sol.insert("WATKR", UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!relativePermeability_[oilPhaseIdx].empty()) { sol.insert("OILKR", UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!relativePermeability_[gasPhaseIdx].empty()) { sol.insert("GASKR", UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), data::TargetType::RESTART_AUXILIARY); } if (!pcSwMdcOw_.empty()) sol.insert ("PCSWM_OW", UnitSystem::measure::identity, std::move(pcSwMdcOw_), data::TargetType::RESTART_AUXILIARY); if (!krnSwMdcOw_.empty()) sol.insert ("KRNSW_OW", UnitSystem::measure::identity, std::move(krnSwMdcOw_), data::TargetType::RESTART_AUXILIARY); if (!pcSwMdcGo_.empty()) sol.insert ("PCSWM_GO", UnitSystem::measure::identity, std::move(pcSwMdcGo_), data::TargetType::RESTART_AUXILIARY); if (!krnSwMdcGo_.empty()) sol.insert ("KRNSW_GO", UnitSystem::measure::identity, std::move(krnSwMdcGo_), data::TargetType::RESTART_AUXILIARY); if (!soMax_.empty()) sol.insert ("SOMAX", UnitSystem::measure::identity, std::move(soMax_), data::TargetType::RESTART_SOLUTION); if (!sSol_.empty()) sol.insert ("SSOLVENT", UnitSystem::measure::identity, std::move(sSol_), data::TargetType::RESTART_SOLUTION); if (!extboX_.empty()) sol.insert ("SS_X", UnitSystem::measure::identity, std::move(extboX_), data::TargetType::RESTART_SOLUTION); if (!extboY_.empty()) sol.insert ("SS_Y", UnitSystem::measure::identity, std::move(extboY_), data::TargetType::RESTART_SOLUTION); if (!extboZ_.empty()) sol.insert ("SS_Z", UnitSystem::measure::identity, std::move(extboZ_), data::TargetType::RESTART_SOLUTION); if (!mFracOil_.empty()) sol.insert ("STD_OIL", UnitSystem::measure::identity, std::move(mFracOil_), data::TargetType::RESTART_SOLUTION); if (!mFracGas_.empty()) sol.insert ("STD_GAS", UnitSystem::measure::identity, std::move(mFracGas_), data::TargetType::RESTART_SOLUTION); if (!mFracCo2_.empty()) sol.insert ("STD_CO2", UnitSystem::measure::identity, std::move(mFracCo2_), data::TargetType::RESTART_SOLUTION); if (!cPolymer_.empty()) sol.insert ("POLYMER", UnitSystem::measure::identity, std::move(cPolymer_), data::TargetType::RESTART_SOLUTION); if (!cFoam_.empty()) sol.insert ("FOAM", UnitSystem::measure::identity, std::move(cFoam_), data::TargetType::RESTART_SOLUTION); if (!cSalt_.empty()) sol.insert ("SALT", UnitSystem::measure::salinity, std::move(cSalt_), data::TargetType::RESTART_SOLUTION); if (!dewPointPressure_.empty()) sol.insert ("PDEW", UnitSystem::measure::pressure, std::move(dewPointPressure_), data::TargetType::RESTART_AUXILIARY); if (!bubblePointPressure_.empty()) sol.insert ("PBUB", UnitSystem::measure::pressure, std::move(bubblePointPressure_), data::TargetType::RESTART_AUXILIARY); if (!swMax_.empty()) sol.insert ("SWMAX", UnitSystem::measure::identity, std::move(swMax_), data::TargetType::RESTART_SOLUTION); if (!minimumOilPressure_.empty()) sol.insert ("PRESROCC", UnitSystem::measure::pressure, std::move(minimumOilPressure_), data::TargetType::RESTART_SOLUTION); if (!overburdenPressure_.empty()) sol.insert ("PRES_OVB", UnitSystem::measure::pressure, std::move(overburdenPressure_), data::TargetType::RESTART_SOLUTION); if (!rockCompPorvMultiplier_.empty()) sol.insert ("PORV_RC", UnitSystem::measure::identity, std::move(rockCompPorvMultiplier_), data::TargetType::RESTART_SOLUTION); if (!rockCompTransMultiplier_.empty()) sol.insert ("TMULT_RC", UnitSystem::measure::identity, std::move(rockCompTransMultiplier_), data::TargetType::RESTART_SOLUTION); // Fluid in place for (const auto& phase : Inplace::phases()) { if (outputFipRestart_ && !fip_[phase].empty()) { sol.insert(EclString(phase), UnitSystem::measure::volume, fip_[phase], data::TargetType::SUMMARY); } } // tracers if (!tracerConcentrations_.empty()) { const auto& tracers = eclState_.tracer(); size_t tracerIdx = 0; for (const auto& tracer : tracers) { std::string tmp = tracer.name + "F"; sol.insert(tmp, UnitSystem::measure::identity, std::move(tracerConcentrations_[tracerIdx++]), data::TargetType::RESTART_SOLUTION); } } } template void EclGenericOutputBlackoilModule:: setRestart(const data::Solution& sol, unsigned elemIdx, unsigned globalDofIndex) { Scalar so = 1.0; if (!saturation_[waterPhaseIdx].empty() && sol.has("SWAT")) { saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex]; so -= sol.data("SWAT")[globalDofIndex]; } if (!saturation_[gasPhaseIdx].empty() && sol.has("SGAS")) { saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex]; so -= sol.data("SGAS")[globalDofIndex]; } if (!sSol_.empty()) { // keep the SSOL option for backward compatibility // should be removed after 10.2018 release if (sol.has("SSOL")) sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex]; else if (sol.has("SSOLVENT")) sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex]; so -= sSol_[elemIdx]; } assert(!saturation_[oilPhaseIdx].empty()); saturation_[oilPhaseIdx][elemIdx] = so; if (!oilPressure_.empty() && sol.has("PRESSURE")) oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex]; if (!temperature_.empty() && sol.has("TEMP")) temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex]; if (!rs_.empty() && sol.has("RS")) rs_[elemIdx] = sol.data("RS")[globalDofIndex]; if (!rv_.empty() && sol.has("RV")) rv_[elemIdx] = sol.data("RV")[globalDofIndex]; if (!cPolymer_.empty() && sol.has("POLYMER")) cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex]; if (!cFoam_.empty() && sol.has("FOAM")) cFoam_[elemIdx] = sol.data("FOAM")[globalDofIndex]; if (!cSalt_.empty() && sol.has("SALT")) cSalt_[elemIdx] = sol.data("SALT")[globalDofIndex]; if (!soMax_.empty() && sol.has("SOMAX")) soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex]; if (!pcSwMdcOw_.empty() &&sol.has("PCSWM_OW")) pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex]; if (!krnSwMdcOw_.empty() && sol.has("KRNSW_OW")) krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex]; if (!pcSwMdcGo_.empty() && sol.has("PCSWM_GO")) pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex]; if (!krnSwMdcGo_.empty() && sol.has("KRNSW_GO")) krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex]; if (!ppcw_.empty() && sol.has("PPCW")) ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex]; } template typename EclGenericOutputBlackoilModule::ScalarBuffer EclGenericOutputBlackoilModule:: regionSum(const ScalarBuffer& property, const std::vector& regionId, size_t maxNumberOfRegions, const Comm& comm) { ScalarBuffer totals(maxNumberOfRegions, 0.0); if (property.empty()) return totals; assert(regionId.size() == property.size()); for (size_t j = 0; j < regionId.size(); ++j) { const int regionIdx = regionId[j] - 1; // the cell is not attributed to any region. ignore it! if (regionIdx < 0) continue; assert(regionIdx < static_cast(maxNumberOfRegions)); totals[regionIdx] += property[j]; } for (size_t i = 0; i < maxNumberOfRegions; ++i) totals[i] = comm.sum(totals[i]); return totals; } template void EclGenericOutputBlackoilModule:: doAllocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log, const bool isRestart, const bool vapparsActive, const bool enableHysteresis, unsigned numTracers) { // Only output RESTART_AUXILIARY asked for by the user. std::map rstKeywords = schedule_.rst_keywords(reportStepNum); for (auto& [keyword, should_write] : rstKeywords) { if (this->isOutputCreationDirective_(keyword)) { // 'BASIC', 'FREQ' and similar. Don't attempt to create // cell-based output for these keywords and don't warn about // not being able to create such cell-based result vectors. should_write = 0; } } outputFipRestart_ = false; computeFip_ = false; // Fluid in place for (const auto& phase : Inplace::phases()) { if (!substep || summaryConfig_.require3DField(EclString(phase))) { if (rstKeywords["FIP"] > 0) { rstKeywords["FIP"] = 0; outputFipRestart_ = true; } fip_[phase].resize(bufferSize, 0.0); computeFip_ = true; } else fip_[phase].clear(); } if (!substep || summaryConfig_.hasKeyword("FPR") || summaryConfig_.hasKeyword("FPRP") || !this->RPRNodes_.empty()) { fip_[Inplace::Phase::PoreVolume].resize(bufferSize, 0.0); hydrocarbonPoreVolume_.resize(bufferSize, 0.0); pressureTimesPoreVolume_.resize(bufferSize, 0.0); pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0); } else { hydrocarbonPoreVolume_.clear(); pressureTimesPoreVolume_.clear(); pressureTimesHydrocarbonVolume_.clear(); } // Well RFT data if (!substep) { const auto& rft_config = schedule_[reportStepNum].rft_config(); for (const auto& well: schedule_.getWells(reportStepNum)) { // don't bother with wells not on this process if (isDefunctParallelWell(well.name())) { continue; } if (!rft_config.active()) continue; for (const auto& connection: well.getConnections()) { const size_t i = size_t(connection.getI()); const size_t j = size_t(connection.getJ()); const size_t k = size_t(connection.getK()); const size_t index = eclState_.gridDims().getGlobalIndex(i, j, k); if (FluidSystem::phaseIsActive(oilPhaseIdx)) oilConnectionPressures_.emplace(std::make_pair(index, 0.0)); if (FluidSystem::phaseIsActive(waterPhaseIdx)) waterConnectionSaturations_.emplace(std::make_pair(index, 0.0)); if (FluidSystem::phaseIsActive(gasPhaseIdx)) gasConnectionSaturations_.emplace(std::make_pair(index, 0.0)); } } } // field data should be allocated // 1) when we want to restart // 2) when it is ask for by the user via restartConfig // 3) when it is not a substep if (!isRestart && (!schedule_.write_rst_file(reportStepNum, log) || substep)) return; // always output saturation of active phases for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; saturation_[phaseIdx].resize(bufferSize, 0.0); } // and oil pressure oilPressure_.resize(bufferSize, 0.0); rstKeywords["PRES"] = 0; rstKeywords["PRESSURE"] = 0; // allocate memory for temperature if (enableEnergy_ || enableTemperature_) { temperature_.resize(bufferSize, 0.0); rstKeywords["TEMP"] = 0; } if (FluidSystem::phaseIsActive(oilPhaseIdx)) rstKeywords["SOIL"] = 0; if (FluidSystem::phaseIsActive(gasPhaseIdx)) rstKeywords["SGAS"] = 0; if (FluidSystem::phaseIsActive(waterPhaseIdx)) rstKeywords["SWAT"] = 0; if (FluidSystem::enableDissolvedGas()) { rs_.resize(bufferSize, 0.0); rstKeywords["RS"] = 0; } if (FluidSystem::enableVaporizedOil()) { rv_.resize(bufferSize, 0.0); rstKeywords["RV"] = 0; } if (enableSolvent_) sSol_.resize(bufferSize, 0.0); if (enablePolymer_) cPolymer_.resize(bufferSize, 0.0); if (enableFoam_) cFoam_.resize(bufferSize, 0.0); if (enableBrine_) cSalt_.resize(bufferSize, 0.0); if (enableExtbo_) { extboX_.resize(bufferSize, 0.0); extboY_.resize(bufferSize, 0.0); extboZ_.resize(bufferSize, 0.0); mFracOil_.resize(bufferSize, 0.0); mFracGas_.resize(bufferSize, 0.0); mFracCo2_.resize(bufferSize, 0.0); } if (vapparsActive) soMax_.resize(bufferSize, 0.0); if (enableHysteresis) { pcSwMdcOw_.resize(bufferSize, 0.0); krnSwMdcOw_.resize(bufferSize, 0.0); pcSwMdcGo_.resize(bufferSize, 0.0); krnSwMdcGo_.resize(bufferSize, 0.0); } if (eclState_.fieldProps().has_double("SWATINIT")) { ppcw_.resize(bufferSize, 0.0); rstKeywords["PPCW"] = 0; } if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) { rstKeywords["RSSAT"] = 0; gasDissolutionFactor_.resize(bufferSize, 0.0); } if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) { rstKeywords["RVSAT"] = 0; oilVaporizationFactor_.resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) { rstKeywords["BW"] = 0; invB_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) { rstKeywords["BO"] = 0; invB_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) { rstKeywords["BG"] = 0; invB_[gasPhaseIdx].resize(bufferSize, 0.0); } if (rstKeywords["DEN"] > 0) { rstKeywords["DEN"] = 0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; density_[phaseIdx].resize(bufferSize, 0.0); } } const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0); const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0); const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0); rstKeywords["VISC"] = 0; if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) { rstKeywords["VWAT"] = 0; viscosity_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) { rstKeywords["VOIL"] = 0; viscosity_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) { rstKeywords["VGAS"] = 0; viscosity_[gasPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) { rstKeywords["KRW"] = 0; relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) { rstKeywords["KRO"] = 0; relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) { rstKeywords["KRG"] = 0; relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0); } if (rstKeywords["PBPD"] > 0) { rstKeywords["PBPD"] = 0; bubblePointPressure_.resize(bufferSize, 0.0); dewPointPressure_.resize(bufferSize, 0.0); } // tracers if (numTracers > 0) { tracerConcentrations_.resize(numTracers); for (unsigned tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx) { tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0); } } // ROCKC if (rstKeywords["ROCKC"] > 0) { rstKeywords["ROCKC"] = 0; rockCompPorvMultiplier_.resize(bufferSize, 0.0); rockCompTransMultiplier_.resize(bufferSize, 0.0); swMax_.resize(bufferSize, 0.0); minimumOilPressure_.resize(bufferSize, 0.0); overburdenPressure_.resize(bufferSize, 0.0); } //Warn for any unhandled keyword if (log) { for (auto& keyValue: rstKeywords) { if (keyValue.second > 0) { std::string logstring = "Keyword '"; logstring.append(keyValue.first); logstring.append("' is unhandled for output to file."); OpmLog::warning("Unhandled output keyword", logstring); } } } failedCellsPb_.clear(); failedCellsPd_.clear(); // Not supported in flow legacy if (false) saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0); if (false) oilSaturationPressure_.resize(bufferSize, 0.0); } template void EclGenericOutputBlackoilModule:: fipUnitConvert_(std::unordered_map& fip) const { const UnitSystem& units = eclState_.getUnits(); if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { fip[Inplace::Phase::WATER] = unit::convert::to(fip[Inplace::Phase::WATER], unit::stb); fip[Inplace::Phase::OIL] = unit::convert::to(fip[Inplace::Phase::OIL], unit::stb); fip[Inplace::Phase::OilInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::OilInLiquidPhase], unit::stb); fip[Inplace::Phase::OilInGasPhase] = unit::convert::to(fip[Inplace::Phase::OilInGasPhase], unit::stb); fip[Inplace::Phase::GAS] = unit::convert::to(fip[Inplace::Phase::GAS], 1000*unit::cubic(unit::feet)); fip[Inplace::Phase::GasInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::GasInLiquidPhase], 1000*unit::cubic(unit::feet)); fip[Inplace::Phase::GasInGasPhase] = unit::convert::to(fip[Inplace::Phase::GasInGasPhase], 1000*unit::cubic(unit::feet)); fip[Inplace::Phase::PoreVolume] = unit::convert::to(fip[Inplace::Phase::PoreVolume], unit::stb); } else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) { Scalar scc = unit::cubic(prefix::centi * unit::meter); //standard cubic cm. fip[Inplace::Phase::WATER] = unit::convert::to(fip[Inplace::Phase::WATER], scc); fip[Inplace::Phase::OIL] = unit::convert::to(fip[Inplace::Phase::OIL], scc); fip[Inplace::Phase::OilInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::OilInLiquidPhase], scc); fip[Inplace::Phase::OilInGasPhase] = unit::convert::to(fip[Inplace::Phase::OilInGasPhase], scc); fip[Inplace::Phase::GAS] = unit::convert::to(fip[Inplace::Phase::GAS], scc); fip[Inplace::Phase::GasInLiquidPhase] = unit::convert::to(fip[Inplace::Phase::GasInLiquidPhase], scc); fip[Inplace::Phase::GasInGasPhase] = unit::convert::to(fip[Inplace::Phase::GasInGasPhase], scc); fip[Inplace::Phase::PoreVolume] = unit::convert::to(fip[Inplace::Phase::PoreVolume], scc); } else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { // nothing to do } else { throw std::runtime_error("Unsupported unit type for fluid in place output."); } } template void EclGenericOutputBlackoilModule:: pressureUnitConvert_(Scalar& pav) const { const UnitSystem& units = eclState_.getUnits(); if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { pav = unit::convert::to(pav, unit::psia); } else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { pav = unit::convert::to(pav, unit::barsa); } else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) { pav = unit::convert::to(pav, unit::atm); } else { throw std::runtime_error("Unsupported unit type for fluid in place output."); } } template void EclGenericOutputBlackoilModule:: outputRegionFluidInPlace_(std::unordered_map oip, std::unordered_map cip, const Scalar& pav, const int reg) const { if (forceDisableFipOutput_) return; // don't output FIPNUM report if the region has no porv. if (cip[Inplace::Phase::PoreVolume] == 0) return; const UnitSystem& units = eclState_.getUnits(); std::ostringstream ss; if (reg == 0) { ss << " ===================================================\n" << " : Field Totals :\n"; } else { ss << " ===================================================\n" << " : FIPNUM report region " << std::setw(2) << reg << " :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RM3 :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Porv volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RB :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Pore volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n"; } ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n" << ":Currently in place :" << std::setw(14) << cip[Inplace::Phase::OilInLiquidPhase] << std::setw(14) << cip[Inplace::Phase::OilInGasPhase] << std::setw(14) << cip[Inplace::Phase::OIL] << ":" << std::setw(13) << cip[Inplace::Phase::WATER] << " :" << std::setw(14) << (cip[Inplace::Phase::GasInGasPhase]) << std::setw(14) << cip[Inplace::Phase::GasInLiquidPhase] << std::setw(14) << cip[Inplace::Phase::GAS] << ":\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:\n" << ":Originally in place :" << std::setw(14) << oip[Inplace::Phase::OilInLiquidPhase] << std::setw(14) << oip[Inplace::Phase::OilInGasPhase] << std::setw(14) << oip[Inplace::Phase::OIL] << ":" << std::setw(13) << oip[Inplace::Phase::WATER] << " :" << std::setw(14) << oip[Inplace::Phase::GasInGasPhase] << std::setw(14) << oip[Inplace::Phase::GasInLiquidPhase] << std::setw(14) << oip[Inplace::Phase::GAS] << ":\n" << ":========================:==========================================:================:==========================================:\n"; OpmLog::note(ss.str()); } template void EclGenericOutputBlackoilModule:: outputProductionReport_(const ScalarBuffer& wellProd, const StringBuffer& wellProdNames, const bool forceDisableProdOutput) { if (forceDisableProdOutput) return; const UnitSystem& units = eclState_.getUnits(); std::ostringstream ss; if (wellProdNames[WellProdDataType::WellName].empty()) { ss << "======================================================= PRODUCTION REPORT =======================================================\n"//=================== \n" << ": WELL : LOCATION :CTRL: OIL : WATER : GAS : FLUID : WATER : GAS/OIL : WAT/GAS : BHP OR : THP OR :\n"// STEADY-ST PI :\n" << ": NAME : (I,J,K) :MODE: RATE : RATE : RATE : RES.VOL. : CUT : RATIO : RATIO : CON.PR.: BLK.PR.:\n";// OR POTN OF PREF. PH:\n"; if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << ": : : : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : SCM/SCM : SCM/SCM : SCM/SCM : BARSA : BARSA :\n";// :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << ": : : : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : : MSCF/STB : STB/MSCF : PSIA : PSIA :\n";// :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) { ss << ": : : : SCC/HR : SCC/HR : SCC/HR : RCC : SCC/SCC : SCC/SCC : SCC/SCC : ATMA : ATMA :\n";// :\n"; } ss << "=================================================================================================================================\n";//=================== \n"; } else { if (wellProd[WellProdDataType::WellLocationi] < 1) { ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(11) << "" << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << "" << ":" << std::setw(8) << "" << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n" } else { ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(5) << wellProd[WellProdDataType::WellLocationi] << "," << std::setw(5) << wellProd[WellProdDataType::WellLocationj] << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << wellProd[WellProdDataType::BHP] << ":" << std::setw(8) << wellProd[WellProdDataType::THP] << ": \n";//wellProd[WellProdDataType::SteadyStatePI] << std::setw(10) << "\n" } ss << ":"<< std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (5) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (11) << ":" << std::setfill ('-') << std::setw (13) << ":" << std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (9) << ":" << "\n"; } OpmLog::note(ss.str()); } template void EclGenericOutputBlackoilModule:: outputInjectionReport_(const ScalarBuffer& wellInj, const StringBuffer& wellInjNames, const bool forceDisableInjOutput) { if (forceDisableInjOutput) return; const UnitSystem& units = eclState_.getUnits(); std::ostringstream ss; if (wellInjNames[WellInjDataType::WellName].empty()) { ss << "=================================================== INJECTION REPORT ========================================\n"//===================== \n" << ": WELL : LOCATION : CTRL : CTRL : CTRL : OIL : WATER : GAS : FLUID : BHP OR : THP OR :\n"// STEADY-ST II :\n" << ": NAME : (I,J,K) : MODE : MODE : MODE : RATE : RATE : RATE : RES.VOL. : CON.PR.: BLK.PR.:\n";// OR POTENTIAL :\n"; if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << ": : : OIL : WAT : GAS : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : BARSA : BARSA :\n";// :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << ": : : OIL : WAT : GAS : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : PSIA : PSIA :\n";// :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) { ss << ": : : OIL : WAT : GAS : SCC/HR : SCC/HR : SCC/HR : RCC/HR : ATMA : ATMA :\n";// :\n"; } ss << "==============================================================================================================\n";//===================== \n"; } else { if (wellInj[WellInjDataType::WellLocationi] < 1) { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< "" << ":" << std::setw(8)<< "" << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n" } else { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(5) << wellInj[WellInjDataType::WellLocationi] << "," << std::setw(5) << wellInj[WellInjDataType::WellLocationj] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< wellInj[WellInjDataType::BHP] << ":" << std::setw(8)<< wellInj[WellInjDataType::THP] << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n" } ss << ":--------:-----------:------:------:------:------------:----------:-----------:-----------:--------:--------: \n";//--------------------:\n"; } OpmLog::note(ss.str()); } template void EclGenericOutputBlackoilModule:: outputCumulativeReport_(const ScalarBuffer& wellCum, const StringBuffer& wellCumNames, const bool forceDisableCumOutput) { if (forceDisableCumOutput) return; const UnitSystem& units = eclState_.getUnits(); std::ostringstream ss; if (wellCumNames[WellCumDataType::WellName].empty()) { ss << "=================================================== CUMULATIVE PRODUCTION/INJECTION REPORT =========================================\n" << ": WELL : LOCATION : WELL :CTRL: OIL : WATER : GAS : Prod : OIL : WATER : GAS : INJ :\n" << ": NAME : (I,J,K) : TYPE :MODE: PROD : PROD : PROD : RES.VOL. : INJ : INJ : INJ : RES.VOL. :\n"; if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << ": : : : : MSCM : MSCM : MMSCM : MRCM : MSCM : MSCM : MMSCM : MRCM :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << ": : : : : MSTB : MSTB : MMSCF : MRB : MSTB : MSTB : MMSCF : MRB :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) { ss << ": : : : : MSCC : MSCC : MMSCC : MRCC : MSCC : MSCC : MMSCC : MRCC :\n"; } ss << "====================================================================================================================================\n"; } else { if (wellCum[WellCumDataType::WellLocationi] < 1) { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n"; } else { ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(5) << wellCum[WellCumDataType::WellLocationi] << "," << std::setw(5) << wellCum[WellCumDataType::WellLocationj] << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n"; } ss << ":--------:-----------:--------:----:------------:----------:-----------:-----------:------------:----------:-----------:-----------: \n"; } OpmLog::note(ss.str()); } template bool EclGenericOutputBlackoilModule:: isOutputCreationDirective_(const std::string& keyword) { return (keyword == "BASIC") || (keyword == "FREQ") || (keyword == "RESTART") // From RPTSCHED || (keyword == "SAVE") || (keyword == "SFREQ"); // Not really supported } template Scalar EclGenericOutputBlackoilModule:: pressureAverage_(const Scalar& pressurePvHydrocarbon, const Scalar& pvHydrocarbon, const Scalar& pressurePv, const Scalar& pv, bool hydrocarbon) { if (pvHydrocarbon > 1e-10 && hydrocarbon) return pressurePvHydrocarbon / pvHydrocarbon; return pressurePv / pv; } template typename EclGenericOutputBlackoilModule::ScalarBuffer EclGenericOutputBlackoilModule:: pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon, const ScalarBuffer& pvHydrocarbon, const ScalarBuffer& pressurePv, const ScalarBuffer& pv, bool hydrocarbon) { size_t size = pressurePvHydrocarbon.size(); assert(pvHydrocarbon.size() == size); assert(pressurePv.size() == size); assert(pv.size() == size); ScalarBuffer fraction(size, 0.0); for (size_t i = 0; i < size; ++i) { fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon); } return fraction; } template void EclGenericOutputBlackoilModule:: outputErrorLog(const Comm& comm) const { const size_t maxNumCellsFaillog = 20; int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size(); std::vector displPb, displPd, recvLenPb, recvLenPd; if (comm.rank() == 0) { displPb.resize(comm.size()+1, 0); displPd.resize(comm.size()+1, 0); recvLenPb.resize(comm.size()); recvLenPd.resize(comm.size()); } comm.gather(&pbSize, recvLenPb.data(), 1, 0); comm.gather(&pdSize, recvLenPd.data(), 1, 0); std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1); std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1); std::vector globalFailedCellsPb, globalFailedCellsPd; if (comm.rank() == 0) { globalFailedCellsPb.resize(displPb.back()); globalFailedCellsPd.resize(displPd.back()); } comm.gatherv(failedCellsPb_.data(), static_cast(failedCellsPb_.size()), globalFailedCellsPb.data(), recvLenPb.data(), displPb.data(), 0); comm.gatherv(failedCellsPd_.data(), static_cast(failedCellsPd_.size()), globalFailedCellsPd.data(), recvLenPd.data(), displPd.data(), 0); std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end()); std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end()); if (!globalFailedCellsPb.empty()) { std::stringstream errlog; errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells ["; errlog << globalFailedCellsPb[0]; const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size()); for (size_t i = 1; i < maxElems; ++i) { errlog << ", " << globalFailedCellsPb[i]; } if (globalFailedCellsPb.size() > maxNumCellsFaillog) { errlog << ", ..."; } errlog << "]"; OpmLog::warning("Bubble point numerical problem", errlog.str()); } if (!globalFailedCellsPd.empty()) { std::stringstream errlog; errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells ["; errlog << globalFailedCellsPd[0]; const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size()); for (size_t i = 1; i < maxElems; ++i) { errlog << ", " << globalFailedCellsPd[i]; } if (globalFailedCellsPd.size() > maxNumCellsFaillog) { errlog << ", ..."; } errlog << "]"; OpmLog::warning("Dew point numerical problem", errlog.str()); } } template void EclGenericOutputBlackoilModule:: outputFipLogImpl(const Inplace& inplace) const { { Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV), inplace.get(Inplace::Phase::HydroCarbonPV), inplace.get(Inplace::Phase::PressurePV), inplace.get(Inplace::Phase::PoreVolume), true); std::unordered_map initial_values; std::unordered_map current_values; for (const auto& phase : Inplace::phases()) { initial_values[phase] = this->initialInplace_->get(phase); current_values[phase] = inplace.get(phase); } fipUnitConvert_(initial_values); fipUnitConvert_(current_values); pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure); outputRegionFluidInPlace_(initial_values, current_values, fieldHydroCarbonPoreVolumeAveragedPressure); } for (size_t reg = 1; reg <= inplace.max_region("FIPNUM"); ++reg) { std::unordered_map initial_values; std::unordered_map current_values; for (const auto& phase : Inplace::phases()) { initial_values[phase] = this->initialInplace_->get("FIPNUM", phase, reg); current_values[phase] = inplace.get("FIPNUM", phase, reg); } fipUnitConvert_(initial_values); fipUnitConvert_(current_values); Scalar regHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(inplace.get("FIPNUM", Inplace::Phase::PressureHydroCarbonPV, reg), inplace.get("FIPNUM", Inplace::Phase::HydroCarbonPV, reg), inplace.get("FIPNUM", Inplace::Phase::PressurePV, reg), inplace.get("FIPNUM", Inplace::Phase::PoreVolume, reg), true); pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure); outputRegionFluidInPlace_(initial_values, current_values, regHydroCarbonPoreVolumeAveragedPressure, reg); } } template int EclGenericOutputBlackoilModule:: regionMax(const std::vector& region, const Comm& comm) { const auto max_value = region.empty() ? 0 : *std::max_element(region.begin(), region.end()); return comm.max(max_value); } template void EclGenericOutputBlackoilModule:: update(Inplace& inplace, const std::string& region_name, Inplace::Phase phase, std::size_t ntFip, const std::vector& values) { double sum = 0; for (std::size_t region_number = 0; region_number < ntFip; region_number++) { inplace.add( region_name, phase, region_number + 1, values[region_number] ); sum += values[region_number]; } inplace.add( phase, sum ); } template void EclGenericOutputBlackoilModule:: makeRegionSum(Inplace& inplace, const std::string& region_name, const Comm& comm) { const auto& region = this->regions_.at(region_name); std::size_t ntFip = this->regionMax(region, comm); update(inplace, region_name, Inplace::Phase::PressurePV, ntFip, this->regionSum(this->pressureTimesPoreVolume_, region, ntFip, comm)); update(inplace, region_name, Inplace::Phase::HydroCarbonPV, ntFip, this->regionSum(this->hydrocarbonPoreVolume_, region, ntFip, comm)); update(inplace, region_name, Inplace::Phase::PressureHydroCarbonPV, ntFip, this->regionSum(this->pressureTimesHydrocarbonVolume_, region, ntFip, comm)); for (const auto& phase : Inplace::phases()) update(inplace, region_name, phase, ntFip, this->regionSum(this->fip_[phase], region, ntFip, comm)); } template Inplace EclGenericOutputBlackoilModule:: accumulateRegionSums(const Comm& comm) { Inplace inplace; for (const auto& [region_name, _] : this->regions_) { (void)_; makeRegionSum(inplace, region_name, comm); } // The first time the outputFipLog function is run we store the inplace values in // the initialInplace_ member. This has at least two problems: // // o We really want the *initial* value - now we get the value after // the first timestep. // // o For restarted runs this is obviously wrong. // // Finally it is of course not desirable to mutate state in an output // routine. if (!this->initialInplace_.has_value()) this->initialInplace_ = inplace; return inplace; } template Scalar EclGenericOutputBlackoilModule:: sum(const ScalarBuffer& v) { return std::accumulate(v.begin(), v.end(), Scalar{0}); } template void EclGenericOutputBlackoilModule:: updateSummaryRegionValues(const Inplace& inplace, std::map& miscSummaryData, std::map>& regionData) const { // The field summary vectors should only use the FIPNUM based region sum. { for (const auto& phase : Inplace::phases()) { std::string key = "F" + EclString(phase); if (summaryConfig_.hasKeyword(key)) miscSummaryData[key] = inplace.get(phase); } if (summaryConfig_.hasKeyword("FOE") && this->initialInplace_) miscSummaryData["FOE"] = inplace.get(Inplace::Phase::OIL) / this->initialInplace_.value().get(Inplace::Phase::OIL); if (summaryConfig_.hasKeyword("FPR")) miscSummaryData["FPR"] = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV), inplace.get(Inplace::Phase::HydroCarbonPV), inplace.get(Inplace::Phase::PressurePV), inplace.get(Inplace::Phase::PoreVolume), true); if (summaryConfig_.hasKeyword("FPRP")) miscSummaryData["FPRP"] = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV), inplace.get(Inplace::Phase::HydroCarbonPV), inplace.get(Inplace::Phase::PressurePV), inplace.get(Inplace::Phase::PoreVolume), false); } // The region summary vectors should loop through the FIPxxx regions to // support the RPR__xxx summary keywords. { for (const auto& phase : Inplace::phases()) { for (const auto& node : this->regionNodes_.at(phase)) regionData[node.keyword()] = inplace.get_vector(node.fip_region(), phase); } // The exact same quantity is calculated for RPR and RPRP - is that correct? for (const auto& node : this->RPRNodes_) regionData[node.keyword()] = pressureAverage_(inplace.get_vector(node.fip_region(), Inplace::Phase::PressureHydroCarbonPV), inplace.get_vector(node.fip_region(), Inplace::Phase::HydroCarbonPV), inplace.get_vector(node.fip_region(), Inplace::Phase::PressurePV), inplace.get_vector(node.fip_region(), Inplace::Phase::PoreVolume), true); for (const auto& node : this->RPRPNodes_) regionData[node.keyword()] = pressureAverage_(inplace.get_vector(node.fip_region(), Inplace::Phase::PressureHydroCarbonPV), inplace.get_vector(node.fip_region(), Inplace::Phase::HydroCarbonPV), inplace.get_vector(node.fip_region(), Inplace::Phase::PressurePV), inplace.get_vector(node.fip_region(), Inplace::Phase::PoreVolume), false); } } template class EclGenericOutputBlackoilModule,double>; template class EclGenericOutputBlackoilModule,double>; } // namespace Opm