// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_DUNE_FEM
#include
#include
#include
#endif
#if HAVE_MPI
#include
#endif
namespace {
/*!
* \brief Detect whether two cells are direct vertical neighbours.
*
* I.e. have the same i and j index and all cartesian cells between them
* along the vertical column are inactive.
*
* \tparam CM The type of the cartesian index mapper.
* \param cartMapper The mapper onto cartesian indices.
* \param cartesianToActive The mapping of cartesian indices to active indices.
* \param smallGlobalIndex The cartesian cell index of the cell with smaller index
* \param largeGlobalIndex The cartesian cell index of the cell with larger index
* \return True if the cells have the same i and j indices and all cartesian cells
* between them are inactive.
*/
bool directVerticalNeighbors(const std::array& cartDims,
const std::unordered_map& cartesianToActive,
int smallGlobalIndex, int largeGlobalIndex)
{
assert(smallGlobalIndex <= largeGlobalIndex);
std::array ijk1, ijk2;
auto globalToIjk = [cartDims](int gc) {
std::array ijk;
ijk[0] = gc % cartDims[0];
gc /= cartDims[0];
ijk[1] = gc % cartDims[1];
ijk[2] = gc / cartDims[1];
return ijk;
};
ijk1 = globalToIjk(smallGlobalIndex);
ijk2 = globalToIjk(largeGlobalIndex);
assert(ijk2[2]>=ijk1[2]);
if ( ijk1[0] == ijk2[0] && ijk1[1] == ijk2[1] && (ijk2[2] - ijk1[2]) > 1)
{
assert((largeGlobalIndex-smallGlobalIndex)%(cartDims[0]*cartDims[1])==0);
for ( int gi = smallGlobalIndex + cartDims[0] * cartDims[1]; gi < largeGlobalIndex;
gi += cartDims[0] * cartDims[1] )
{
if ( cartesianToActive.find( gi ) != cartesianToActive.end() )
{
return false;
}
}
return true;
} else
return false;
}
struct EclWriteTasklet : public Opm::TaskletInterface
{
Opm::Action::State actionState_;
Opm::SummaryState summaryState_;
Opm::UDQState udqState_;
Opm::EclipseIO& eclIO_;
int reportStepNum_;
bool isSubStep_;
double secondsElapsed_;
Opm::RestartValue restartValue_;
bool writeDoublePrecision_;
explicit EclWriteTasklet(const Opm::Action::State& actionState,
const Opm::SummaryState& summaryState,
const Opm::UDQState& udqState,
Opm::EclipseIO& eclIO,
int reportStepNum,
bool isSubStep,
double secondsElapsed,
Opm::RestartValue restartValue,
bool writeDoublePrecision)
: actionState_(actionState)
, summaryState_(summaryState)
, udqState_(udqState)
, eclIO_(eclIO)
, reportStepNum_(reportStepNum)
, isSubStep_(isSubStep)
, secondsElapsed_(secondsElapsed)
, restartValue_(restartValue)
, writeDoublePrecision_(writeDoublePrecision)
{ }
// callback to eclIO serial writeTimeStep method
void run()
{
eclIO_.writeTimeStep(actionState_,
summaryState_,
udqState_,
reportStepNum_,
isSubStep_,
secondsElapsed_,
restartValue_,
writeDoublePrecision_);
}
};
}
namespace Opm {
template
EclGenericWriter::
EclGenericWriter(const Schedule& schedule,
const EclipseState& eclState,
const SummaryConfig& summaryConfig,
const Grid& grid,
const EquilGrid* equilGrid,
const GridView& gridView,
const Dune::CartesianIndexMapper& cartMapper,
const Dune::CartesianIndexMapper* equilCartMapper,
bool enableAsyncOutput)
: collectToIORank_(grid,
equilGrid,
gridView,
cartMapper,
equilCartMapper)
, grid_(grid)
, gridView_(gridView)
, schedule_(schedule)
, eclState_(eclState)
, summaryConfig_(summaryConfig)
, cartMapper_(cartMapper)
, equilCartMapper_(equilCartMapper)
, equilGrid_(equilGrid)
{
if (collectToIORank_.isIORank()) {
eclIO_.reset(new EclipseIO(eclState_,
UgGridHelpers::createEclipseGrid(*equilGrid, eclState_.getInputGrid()),
schedule_,
summaryConfig_));
const auto& wbp_calculators = eclIO_->summary().wbp_calculators( schedule.size() - 1 );
wbp_index_list_ = wbp_calculators.index_list();
}
if (collectToIORank_.isParallel()) {
const auto& comm = grid_.comm();
unsigned long size = wbp_index_list_.size();
comm.broadcast(&size, 1, collectToIORank_.ioRank);
if (!collectToIORank_.isIORank())
wbp_index_list_.resize( size );
comm.broadcast(wbp_index_list_.data(), size, collectToIORank_.ioRank);
}
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
int numWorkerThreads = 0;
if (enableAsyncOutput && collectToIORank_.isIORank())
numWorkerThreads = 1;
taskletRunner_.reset(new TaskletRunner(numWorkerThreads));
}
template
const EclipseIO& EclGenericWriter::
eclIO() const
{
assert(eclIO_);
return *eclIO_;
}
template
void EclGenericWriter::
writeInit()
{
if (collectToIORank_.isIORank()) {
std::map > integerVectors;
if (collectToIORank_.isParallel())
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
auto cartMap = cartesianToCompressed(equilGrid_->size(0),
UgGridHelpers::globalCell(*equilGrid_));
eclIO_->writeInitial(computeTrans_(cartMap), integerVectors, exportNncStructure_(cartMap));
}
}
template
data::Solution EclGenericWriter::
computeTrans_(const std::unordered_map& cartesianToActive) const
{
const auto& cartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper.cartesianDimensions();
const int globalSize = cartDims[0]*cartDims[1]*cartDims[2];
data::CellData tranx = {UnitSystem::measure::transmissibility, std::vector(globalSize), data::TargetType::INIT};
data::CellData trany = {UnitSystem::measure::transmissibility, std::vector(globalSize), data::TargetType::INIT};
data::CellData tranz = {UnitSystem::measure::transmissibility, std::vector(globalSize), data::TargetType::INIT};
for (size_t i = 0; i < tranx.data.size(); ++i) {
tranx.data[0] = 0.0;
trany.data[0] = 0.0;
tranz.data[0] = 0.0;
}
using GlobalGridView = typename EquilGrid::LeafGridView;
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper;
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
auto elemIt = globalGridView.template begin*codim=*/0>();
const auto& elemEndIt = globalGridView.template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
continue; // intersection is on the domain boundary
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
// Ordering of compressed and uncompressed index should be the same
const int cartIdx1 = cartMapper.cartesianIndex( c1 );
const int cartIdx2 = cartMapper.cartesianIndex( c2 );
// Ordering of compressed and uncompressed index should be the same
assert(cartIdx1 <= cartIdx2);
int gc1 = std::min(cartIdx1, cartIdx2);
int gc2 = std::max(cartIdx1, cartIdx2);
if (gc2 - gc1 == 1 && cartDims[0] > 1 ) {
tranx.data[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skip other if clauses as they are false, last one needs some computation
}
if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
trany.data[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skipt next if clause as it needs some computation
}
if ( gc2 - gc1 == cartDims[0]*cartDims[1] ||
directVerticalNeighbors(cartDims, cartesianToActive, gc1, gc2))
tranz.data[gc1] = globalTrans().transmissibility(c1, c2);
}
}
return {{"TRANX", tranx},
{"TRANY", trany},
{"TRANZ", tranz}};
}
template
std::vector EclGenericWriter::
exportNncStructure_(const std::unordered_map& cartesianToActive) const
{
std::size_t nx = eclState_.getInputGrid().getNX();
std::size_t ny = eclState_.getInputGrid().getNY();
auto nncData = eclState_.getInputNNC().input();
const auto& unitSystem = eclState_.getDeckUnitSystem();
std::vector outputNnc;
std::size_t index = 0;
for( const auto& entry : nncData ) {
// test whether NNC is not a neighboring connection
// cell2>=cell1 holds due to sortNncAndApplyEditnnc
assert( entry.cell2 >= entry.cell1 );
auto cellDiff = entry.cell2 - entry.cell1;
if (cellDiff != 1 && cellDiff != nx && cellDiff != nx*ny) {
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, entry.trans);
// Eclipse ignores NNCs (with EDITNNC applied) that are small. Seems like the threshold is 1.0e-6
if ( tt >= 1.0e-6 )
outputNnc.emplace_back(entry.cell1, entry.cell2, entry.trans);
}
++index;
}
using GlobalGridView = typename EquilGrid::LeafGridView;
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper;
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
// Cartesian index mapper for the serial I/O grid
const auto& equilCartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper_.cartesianDimensions();
auto elemIt = globalGridView.template begin*codim=*/0>();
const auto& elemEndIt = globalGridView.template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
continue; // intersection is on the domain boundary
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
std::size_t cc1 = equilCartMapper.cartesianIndex( c1 ); //globalIOGrid_.globalCell()[c1];
std::size_t cc2 = equilCartMapper.cartesianIndex( c2 ); //globalIOGrid_.globalCell()[c2];
if ( cc2 < cc1 )
std::swap(cc1, cc2);
auto cellDiff = cc2 - cc1;
if (cellDiff != 1 &&
cellDiff != nx &&
cellDiff != nx*ny &&
!directVerticalNeighbors(cartDims, cartesianToActive, cc1, cc2)) {
// We need to check whether an NNC for this face was also specified
// via the NNC keyword in the deck (i.e. in the first origNncSize entries.
auto t = globalTrans().transmissibility(c1, c2);
auto candidate = std::lower_bound(nncData.begin(), nncData.end(), NNCdata(cc1, cc2, 0.0));
while ( candidate != nncData.end() && candidate->cell1 == cc1
&& candidate->cell2 == cc2) {
t -= candidate->trans;
++candidate;
}
// eclipse ignores NNCs with zero transmissibility (different threshold than for NNC
// with corresponding EDITNNC above). In addition we do set small transmissibilties
// to zero when setting up the simulator. These will be ignored here, too.
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, std::abs(t));
if ( tt > 1e-12 )
outputNnc.push_back({cc1, cc2, t});
}
}
}
return outputNnc;
}
template
void EclGenericWriter::
doWriteOutput(const int reportStepNum,
const bool isSubStep,
data::Solution&& localCellData,
data::Wells&& localWellData,
data::GroupAndNetworkValues&& localGroupAndNetworkData,
data::Aquifers&& localAquiferData,
const Action::State& actionState,
const UDQState& udqState,
const SummaryState& summaryState,
const std::vector& thresholdPressure,
Scalar curTime,
Scalar nextStepSize,
bool doublePrecision)
{
const auto isParallel = this->collectToIORank_.isParallel();
RestartValue restartValue {
isParallel ? this->collectToIORank_.globalCellData()
: std::move(localCellData),
isParallel ? this->collectToIORank_.globalWellData()
: std::move(localWellData),
isParallel ? this->collectToIORank_.globalGroupAndNetworkData()
: std::move(localGroupAndNetworkData),
isParallel ? this->collectToIORank_.globalAquiferData()
: std::move(localAquiferData)
};
if (eclState_.getSimulationConfig().useThresholdPressure()) {
restartValue.addExtra("THRESHPR", UnitSystem::measure::pressure,
thresholdPressure);
}
// Add suggested next timestep to extra data.
if (! isSubStep) {
restartValue.addExtra("OPMEXTRA", std::vector(1, nextStepSize));
}
// first, create a tasklet to write the data for the current time
// step to disk
auto eclWriteTasklet = std::make_shared(
actionState, summaryState, udqState, *this->eclIO_,
reportStepNum, isSubStep, curTime, std::move(restartValue), doublePrecision);
// then, make sure that the previous I/O request has been completed
// and the number of incomplete tasklets does not increase between
// time steps
this->taskletRunner_->barrier();
// finally, start a new output writing job
this->taskletRunner_->dispatch(std::move(eclWriteTasklet));
}
template
void EclGenericWriter::
evalSummary(int reportStepNum,
Scalar curTime,
const std::map& wbpData,
const data::Wells& localWellData,
const data::GroupAndNetworkValues& localGroupAndNetworkData,
const std::map& localAquiferData,
const std::map, double>& blockData,
const std::map& miscSummaryData,
const std::map>& regionData,
SummaryState& summaryState,
UDQState& udqState,
const Inplace& inplace,
const Inplace& initialInPlace)
{
std::vector buffer;
if (collectToIORank_.isIORank()) {
const auto& summary = eclIO_->summary();
auto wbp_calculators = summary.wbp_calculators(reportStepNum);
for (const auto& [global_index, pressure] : wbpData)
wbp_calculators.add_pressure( global_index, pressure );
const auto& wellData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWellData()
: localWellData;
const auto& groupAndNetworkData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalGroupAndNetworkData()
: localGroupAndNetworkData;
const auto& aquiferData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalAquiferData()
: localAquiferData;
summary.eval(summaryState,
reportStepNum,
curTime,
wellData,
groupAndNetworkData,
miscSummaryData,
initialInPlace,
inplace,
wbp_calculators,
regionData,
blockData,
aquiferData);
/*
Off-by-one-fun: The reportStepNum argument corresponds to the
report step these results will be written to, whereas the argument
to UDQ function evaluation corresponds to the report step we are
currently on.
*/
auto udq_step = reportStepNum - 1;
const auto& udq_config = schedule_.getUDQConfig(udq_step);
udq_config.eval( udq_step, schedule_.wellMatcher(udq_step), summaryState, udqState);
buffer = summaryState.serialize();
}
if (collectToIORank_.isParallel()) {
#ifdef HAVE_MPI
unsigned long buffer_size = buffer.size();
MPI_Bcast(&buffer_size, 1, MPI_UNSIGNED_LONG, collectToIORank_.ioRank, MPI_COMM_WORLD);
if (!collectToIORank_.isIORank())
buffer.resize( buffer_size );
MPI_Bcast(buffer.data(), buffer_size, MPI_CHAR, collectToIORank_.ioRank, MPI_COMM_WORLD);
if (!collectToIORank_.isIORank()) {
SummaryState& st = summaryState;
st.deserialize(buffer);
}
#endif
}
}
template
const typename EclGenericWriter::TransmissibilityType&
EclGenericWriter::
globalTrans() const
{
assert (globalTrans_);
return *globalTrans_;
}
#if HAVE_DUNE_FEM
template class EclGenericWriter>>,
Dune::MultipleCodimMultipleGeomTypeMapper>>>,
double>;
#else
template class EclGenericWriter>,
Dune::MultipleCodimMultipleGeomTypeMapper>, Dune::Impl::MCMGFailLayout>,
double>;
#endif
template class EclGenericWriter,
Dune::PolyhedralGrid<3,3,double>,
Dune::GridView>,
Dune::MultipleCodimMultipleGeomTypeMapper>, Dune::Impl::MCMGFailLayout>,
double>;
} // namespace Opm