/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2014-2016 IRIS AS
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
SimulatorBase::SimulatorBase(const parameter::ParameterGroup& param,
const Grid& grid,
DerivedGeology& geo,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity,
const bool has_disgas,
const bool has_vapoil,
std::shared_ptr eclipse_state,
OutputWriter& output_writer,
const std::vector& threshold_pressures_by_face)
: param_(param),
model_param_(param),
solver_param_(param),
grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
gravity_(gravity),
geo_(geo),
solver_(linsolver),
has_disgas_(has_disgas),
has_vapoil_(has_vapoil),
terminal_output_(param.getDefault("output_terminal", true)),
eclipse_state_(eclipse_state),
output_writer_(output_writer),
rateConverter_(props_, std::vector(AutoDiffGrid::numCells(grid_), 0)),
threshold_pressures_by_face_(threshold_pressures_by_face),
is_parallel_run_( false )
{
// Misc init.
const int num_cells = AutoDiffGrid::numCells(grid);
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast(solver_.parallelInformation());
// Only rank 0 does print to std::cout
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
is_parallel_run_ = ( info.communicator().size() > 1 );
}
#endif
}
template
SimulatorReport SimulatorBase::run(SimulatorTimer& timer,
ReservoirState& state)
{
WellState prev_well_state;
if (output_writer_.isRestart()) {
// This is a restart, populate WellState and ReservoirState state objects from restart file
output_writer_.initFromRestartFile(props_.phaseUsage(), props_.permeability(), grid_, state, prev_well_state);
initHydroCarbonState(state, props_.phaseUsage(), Opm::UgGridHelpers::numCells(grid_), has_disgas_, has_vapoil_);
}
// Create timers and file for writing timing info.
Opm::time::StopWatch solver_timer;
double stime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
const auto& schedule = eclipse_state_->getSchedule();
const auto& events = schedule->getEvents();
// adaptive time stepping
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
if( param_.getDefault("timestep.adaptive", true ) )
{
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
}
/// This code block is used to initialize grid properties TRANX, TRANY
/// and TRANZ which will be written to the INIT file. These properties
/// should be interpreted with a 'the-grid-is-nearly-cartesian'
/// mindset:
///
/// TRANX[i,j,k] = T on face between cells (i,j,k) and (i+1,j ,k )
/// TRANY[i,j,k] = T on face between cells (i,j,k) and (i ,j+1,k )
/// TRANZ[i,j,k] = T on face between cells (i,j,k) and (i ,j ,k+1)
///
/// If the grid structure has no resemblance to a cartesian grid the
/// whole TRAN keyword is quite meaningless.
{
using namespace UgGridHelpers;
const int* dims = cartDims( grid_ );
const int globalSize = dims[0] * dims[1] * dims[2];
const auto& trans = geo_.transmissibility( );
data::CellData tranx = {"TRANX" , UnitSystem::measure::transmissibility, std::vector( globalSize )};
data::CellData trany = {"TRANY" , UnitSystem::measure::transmissibility, std::vector( globalSize )};
data::CellData tranz = {"TRANZ" , UnitSystem::measure::transmissibility, std::vector( globalSize )};
size_t num_faces = numFaces(grid_);
auto fc = faceCells(grid_);
for (size_t i = 0; i < num_faces; ++i) {
auto c1 = std::min( fc(i,0) , fc(i,1));
auto c2 = std::max( fc(i,0) , fc(i,1));
if (c1 == -1 || c2 == -1)
continue;
c1 = globalCell(grid_) ? globalCell(grid_)[c1] : c1;
c2 = globalCell(grid_) ? globalCell(grid_)[c2] : c2;
if ((c2 - c1) == 1) {
tranx.data[c1] = trans[i];
}
if ((c2 - c1) == dims[0]) {
trany.data[c1] = trans[i];
}
if ((c2 - c1) == dims[0]*dims[1]) {
tranz.data[c1] = trans[i];
}
}
std::vector tran;
tran.push_back( std::move( tranx ));
tran.push_back( std::move( trany ));
tran.push_back( std::move( tranz ));
output_writer_.writeInit( tran , geo_.nonCartesianConnections( ));
}
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
if( ! restorefilename.empty() )
{
// -1 means that we'll take the last report step that was written
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
output_writer_.restore( timer,
state,
prev_well_state,
restorefilename,
desiredRestoreStep );
}
unsigned int totalNonlinearIterations = 0;
unsigned int totalLinearIterations = 0;
bool is_well_potentials_computed = param_.getDefault("compute_well_potentials", false );
std::vector well_potentials;
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
step_timer.start();
if ( terminal_output_ )
{
std::ostringstream ss;
timer.report(ss);
OpmLog::note(ss.str());
}
// Create wells and well state.
WellsManager wells_manager(eclipse_state_,
timer.currentStepNum(),
Opm::UgGridHelpers::numCells(grid_),
Opm::UgGridHelpers::globalCell(grid_),
Opm::UgGridHelpers::cartDims(grid_),
Opm::UgGridHelpers::dimensions(grid_),
Opm::UgGridHelpers::cell2Faces(grid_),
Opm::UgGridHelpers::beginFaceCentroids(grid_),
props_.permeability(),
is_parallel_run_,
well_potentials);
const Wells* wells = wells_manager.c_wells();
WellState well_state;
well_state.init(wells, state, prev_well_state);
// give the polymer and surfactant simulators the chance to do their stuff
asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
// write simulation state at the report stage
output_writer_.writeTimeStep( timer, state, well_state );
// Max oil saturation (for VPPARS), hysteresis update.
props_.updateSatOilMax(state.saturation());
props_.updateSatHyst(state.saturation(), allcells_);
// Compute reservoir volumes for RESV controls.
asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state);
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
const WellModel well_model(wells);
auto solver = asImpl().createSolver(well_model);
std::ostringstream step_msg;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
step_msg.imbue(std::locale(std::locale::classic(), facet));
step_msg << "\nTime step " << std::setw(4) <step( timer, *solver, state, well_state, output_writer_ );
}
else {
// solve for complete report step
solver->step(timer.currentStepLength(), state, well_state);
std::ostringstream iter_msg;
iter_msg << "Stepsize " << (double)unit::convert::to(timer.currentStepLength(), unit::day);
if (solver->wellIterations() != std::numeric_limits::min()) {
iter_msg << " days well iterations = " << solver->wellIterations() << ", ";
}
iter_msg << "non-linear iterations = " << solver->nonlinearIterations()
<< ", total linear iterations = " << solver->linearIterations()
<< "\n";
OpmLog::info(iter_msg.str());
}
// update the derived geology (transmissibilities, pore volumes, etc) if the
// has geology changed for the next report step
const int nextTimeStepIdx = timer.currentStepNum() + 1;
if (nextTimeStepIdx < timer.numSteps()
&& events.hasEvent(ScheduleEvents::GEO_MODIFIER, nextTimeStepIdx)) {
// bring the contents of the keywords to the current state of the SCHEDULE
// section
//
// TODO (?): handle the parallel case (maybe this works out of the box)
DeckConstPtr miniDeck = schedule->getModifierDeck(nextTimeStepIdx);
eclipse_state_->applyModifierDeck(miniDeck);
geo_.update(grid_, props_, eclipse_state_, gravity_);
}
// take time that was used to solve system for this reportStep
solver_timer.stop();
// accumulate the number of nonlinear and linear Iterations
totalNonlinearIterations += solver->nonlinearIterations();
totalLinearIterations += solver->linearIterations();
// Report timing.
const double st = solver_timer.secsSinceStart();
// accumulate total time
stime += st;
if ( terminal_output_ )
{
std::string msg;
msg = "Fully implicit solver took: " + std::to_string(st) + " seconds. Total solver time taken: " + std::to_string(stime) + " seconds.";
OpmLog::note(msg);
}
if ( output_writer_.output() ) {
SimulatorReport step_report;
step_report.pressure_time = st;
step_report.total_time = step_timer.secsSinceStart();
step_report.reportParam(tstep_os);
}
// Increment timer, remember well state.
++timer;
prev_well_state = well_state;
// The well potentials are only computed if they are needed
// For now thay are only used to determine default guide rates for group controlled wells
if ( is_well_potentials_computed ) {
asImpl().computeWellPotentials(wells, well_state, well_potentials);
}
}
// Write final simulation state.
output_writer_.writeTimeStep( timer, state, prev_well_state );
// Stop timer and create timing report
total_timer.stop();
SimulatorReport report;
report.pressure_time = stime;
report.transport_time = 0.0;
report.total_time = total_timer.secsSinceStart();
report.total_newton_iterations = totalNonlinearIterations;
report.total_linear_iterations = totalLinearIterations;
return report;
}
namespace SimFIBODetails {
typedef std::unordered_map WellMap;
inline WellMap
mapWells(const std::vector< const Well* >& wells)
{
WellMap wmap;
for (std::vector< const Well* >::const_iterator
w = wells.begin(), e = wells.end();
w != e; ++w)
{
wmap.insert(std::make_pair((*w)->name(), *w));
}
return wmap;
}
inline int
resv_control(const WellControls* ctrl)
{
int i, n = well_controls_get_num(ctrl);
bool match = false;
for (i = 0; (! match) && (i < n); ++i) {
match = well_controls_iget_type(ctrl, i) == RESERVOIR_RATE;
}
if (! match) { i = 0; }
return i - 1; // -1 if no match, undo final "++" otherwise
}
inline bool
is_resv(const Wells& wells,
const int w)
{
return (0 <= resv_control(wells.ctrls[w]));
}
inline bool
is_resv(const WellMap& wmap,
const std::string& name,
const std::size_t step)
{
bool match = false;
WellMap::const_iterator i = wmap.find(name);
if (i != wmap.end()) {
const Well* wp = i->second;
match = (wp->isProducer(step) &&
wp->getProductionProperties(step)
.hasProductionControl(WellProducer::RESV))
|| (wp->isInjector(step) &&
wp->getInjectionProperties(step)
.hasInjectionControl(WellInjector::RESV));
}
return match;
}
inline std::vector
resvWells(const Wells* wells,
const std::size_t step,
const WellMap& wmap)
{
std::vector resv_wells;
if( wells )
{
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
if (is_resv(*wells, w) ||
((wells->name[w] != 0) &&
is_resv(wmap, wells->name[w], step)))
{
resv_wells.push_back(w);
}
}
}
return resv_wells;
}
inline void
historyRates(const PhaseUsage& pu,
const WellProductionProperties& p,
std::vector& rates)
{
assert (! p.predictionMode);
assert (rates.size() ==
std::vector::size_type(pu.num_phases));
if (pu.phase_used[ BlackoilPhases::Aqua ]) {
const std::vector::size_type
i = pu.phase_pos[ BlackoilPhases::Aqua ];
rates[i] = p.WaterRate;
}
if (pu.phase_used[ BlackoilPhases::Liquid ]) {
const std::vector::size_type
i = pu.phase_pos[ BlackoilPhases::Liquid ];
rates[i] = p.OilRate;
}
if (pu.phase_used[ BlackoilPhases::Vapour ]) {
const std::vector::size_type
i = pu.phase_pos[ BlackoilPhases::Vapour ];
rates[i] = p.GasRate;
}
}
} // namespace SimFIBODetails
template
void SimulatorBase::handleAdditionalWellInflow(SimulatorTimer& /* timer */,
WellsManager& /* wells_manager */,
WellState& /* well_state */,
const Wells* /* wells */)
{ }
template
auto SimulatorBase::createSolver(const WellModel& well_model)
-> std::unique_ptr
{
auto model = std::unique_ptr(new Model(model_param_,
grid_,
props_,
geo_,
rock_comp_props_,
well_model,
solver_,
eclipse_state_,
has_disgas_,
has_vapoil_,
terminal_output_));
if (!threshold_pressures_by_face_.empty()) {
model->setThresholdPressures(threshold_pressures_by_face_);
}
return std::unique_ptr(new Solver(solver_param_, std::move(model)));
}
template
void SimulatorBase::computeWellPotentials(const Wells* wells,
const WellState& xw,
std::vector& well_potentials)
{
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
well_potentials.clear();
well_potentials.resize(nw*np,0.0);
for (int w = 0; w < nw; ++w) {
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int phase = 0; phase < np; ++phase) {
well_potentials[w*np + phase] += xw.wellPotentials()[perf*np + phase];
}
}
}
}
template
void SimulatorBase::computeRESV(const std::size_t step,
const Wells* wells,
const BlackoilState& x,
WellState& xw)
{
typedef SimFIBODetails::WellMap WellMap;
const auto w_ecl = eclipse_state_->getSchedule()->getWells(step);
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
const std::vector& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
const std::size_t number_resv_wells = resv_wells.size();
std::size_t global_number_resv_wells = number_resv_wells;
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const auto& info =
boost::any_cast(solver_.parallelInformation());
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
if ( global_number_resv_wells )
{
// At least one process has resv wells. Therefore rate converter needs
// to calculate averages over regions that might cross process
// borders. This needs to be done by all processes and therefore
// outside of the next if statement.
rateConverter_.defineState(x, boost::any_cast(solver_.parallelInformation()));
}
}
else
#endif
{
if ( global_number_resv_wells )
{
rateConverter_.defineState(x);
}
}
if (! resv_wells.empty()) {
const PhaseUsage& pu = props_.phaseUsage();
const std::vector::size_type np = props_.numPhases();
std::vector distr (np);
std::vector hrates(np);
std::vector prates(np);
for (std::vector::const_iterator
rp = resv_wells.begin(), e = resv_wells.end();
rp != e; ++rp)
{
WellControls* ctrl = wells->ctrls[*rp];
const bool is_producer = wells->type[*rp] == PRODUCER;
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
if (0 <= rctrl) {
const std::vector::size_type off = (*rp) * np;
if (is_producer) {
// Convert to positive rates to avoid issues
// in coefficient calculations.
std::transform(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin(), std::negate());
} else {
std::copy(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin());
}
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(prates, fipreg, distr);
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
}
}
// RESV control, WCONHIST wells. A bit of duplicate
// work, regrettably.
if (is_producer && wells->name[*rp] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellProductionProperties& p =
wp->getProductionProperties(step);
if (! p.predictionMode) {
// History matching (WCONHIST/RESV)
SimFIBODetails::historyRates(pu, p, hrates);
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(hrates, fipreg, distr);
// WCONHIST/RESV target is sum of all
// observed phase rates translated to
// reservoir conditions. Recall sign
// convention: Negative for producers.
const double target =
- std::inner_product(distr.begin(), distr.end(),
hrates.begin(), 0.0);
well_controls_clear(ctrl);
well_controls_assert_number_of_phases(ctrl, int(np));
static const double invalid_alq = -std::numeric_limits::max();
static const int invalid_vfp = -std::numeric_limits::max();
const int ok_resv =
well_controls_add_new(RESERVOIR_RATE, target,
invalid_alq, invalid_vfp,
& distr[0], ctrl);
// For WCONHIST the BHP limit is set to 1 atm.
// or a value specified using WELTARG
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (ok_resv != 0 && ok_bhp != 0) {
xw.currentControls()[*rp] = 0;
well_controls_set_current(ctrl, 0);
}
}
}
}
}
}
if( wells )
{
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
WellControls* ctrl = wells->ctrls[w];
const bool is_producer = wells->type[w] == PRODUCER;
if (!is_producer && wells->name[w] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[w]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
if (!injector.predictionMode) {
//History matching WCONINJEH
static const double invalid_alq = -std::numeric_limits::max();
static const int invalid_vfp = -std::numeric_limits::max();
// For WCONINJEH the BHP limit is set to a large number
// or a value specified using WELTARG
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits::max();
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (!ok_bhp) {
OPM_THROW(std::runtime_error, "Failed to add well control.");
}
}
}
}
}
}
}
} // namespace Opm