/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2014-2016 IRIS AS Copyright 2015 Andreas Lauser This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include namespace Opm { template SimulatorBase::SimulatorBase(const parameter::ParameterGroup& param, const Grid& grid, DerivedGeology& geo, BlackoilPropsAdInterface& props, const RockCompressibility* rock_comp_props, NewtonIterationBlackoilInterface& linsolver, const double* gravity, const bool has_disgas, const bool has_vapoil, std::shared_ptr eclipse_state, OutputWriter& output_writer, const std::vector& threshold_pressures_by_face) : param_(param), model_param_(param), solver_param_(param), grid_(grid), props_(props), rock_comp_props_(rock_comp_props), gravity_(gravity), geo_(geo), solver_(linsolver), has_disgas_(has_disgas), has_vapoil_(has_vapoil), terminal_output_(param.getDefault("output_terminal", true)), eclipse_state_(eclipse_state), output_writer_(output_writer), rateConverter_(props_, std::vector(AutoDiffGrid::numCells(grid_), 0)), threshold_pressures_by_face_(threshold_pressures_by_face), is_parallel_run_( false ) { // Misc init. const int num_cells = AutoDiffGrid::numCells(grid); allcells_.resize(num_cells); for (int cell = 0; cell < num_cells; ++cell) { allcells_[cell] = cell; } #if HAVE_MPI if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) ) { const ParallelISTLInformation& info = boost::any_cast(solver_.parallelInformation()); // Only rank 0 does print to std::cout terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 ); is_parallel_run_ = ( info.communicator().size() > 1 ); } #endif } template SimulatorReport SimulatorBase::run(SimulatorTimer& timer, ReservoirState& state) { WellState prev_well_state; if (output_writer_.isRestart()) { // This is a restart, populate WellState and ReservoirState state objects from restart file output_writer_.initFromRestartFile(props_.phaseUsage(), props_.permeability(), grid_, state, prev_well_state); initHydroCarbonState(state, props_.phaseUsage(), Opm::UgGridHelpers::numCells(grid_), has_disgas_, has_vapoil_); } // Create timers and file for writing timing info. Opm::time::StopWatch solver_timer; double stime = 0.0; Opm::time::StopWatch step_timer; Opm::time::StopWatch total_timer; total_timer.start(); std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt"; std::ofstream tstep_os(tstep_filename.c_str()); const auto& schedule = eclipse_state_->getSchedule(); const auto& events = schedule->getEvents(); // adaptive time stepping std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping; if( param_.getDefault("timestep.adaptive", true ) ) { adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) ); } /// This code block is used to initialize grid properties TRANX, TRANY /// and TRANZ which will be written to the INIT file. These properties /// should be interpreted with a 'the-grid-is-nearly-cartesian' /// mindset: /// /// TRANX[i,j,k] = T on face between cells (i,j,k) and (i+1,j ,k ) /// TRANY[i,j,k] = T on face between cells (i,j,k) and (i ,j+1,k ) /// TRANZ[i,j,k] = T on face between cells (i,j,k) and (i ,j ,k+1) /// /// If the grid structure has no resemblance to a cartesian grid the /// whole TRAN keyword is quite meaningless. { using namespace UgGridHelpers; const int* dims = cartDims( grid_ ); const int globalSize = dims[0] * dims[1] * dims[2]; const auto& trans = geo_.transmissibility( ); data::CellData tranx = {"TRANX" , UnitSystem::measure::transmissibility, std::vector( globalSize )}; data::CellData trany = {"TRANY" , UnitSystem::measure::transmissibility, std::vector( globalSize )}; data::CellData tranz = {"TRANZ" , UnitSystem::measure::transmissibility, std::vector( globalSize )}; size_t num_faces = numFaces(grid_); auto fc = faceCells(grid_); for (size_t i = 0; i < num_faces; ++i) { auto c1 = std::min( fc(i,0) , fc(i,1)); auto c2 = std::max( fc(i,0) , fc(i,1)); if (c1 == -1 || c2 == -1) continue; c1 = globalCell(grid_) ? globalCell(grid_)[c1] : c1; c2 = globalCell(grid_) ? globalCell(grid_)[c2] : c2; if ((c2 - c1) == 1) { tranx.data[c1] = trans[i]; } if ((c2 - c1) == dims[0]) { trany.data[c1] = trans[i]; } if ((c2 - c1) == dims[0]*dims[1]) { tranz.data[c1] = trans[i]; } } std::vector tran; tran.push_back( std::move( tranx )); tran.push_back( std::move( trany )); tran.push_back( std::move( tranz )); output_writer_.writeInit( tran , geo_.nonCartesianConnections( )); } std::string restorefilename = param_.getDefault("restorefile", std::string("") ); if( ! restorefilename.empty() ) { // -1 means that we'll take the last report step that was written const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) ); output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep ); } unsigned int totalNonlinearIterations = 0; unsigned int totalLinearIterations = 0; bool is_well_potentials_computed = param_.getDefault("compute_well_potentials", false ); std::vector well_potentials; // Main simulation loop. while (!timer.done()) { // Report timestep. step_timer.start(); if ( terminal_output_ ) { std::ostringstream ss; timer.report(ss); OpmLog::note(ss.str()); } // Create wells and well state. WellsManager wells_manager(eclipse_state_, timer.currentStepNum(), Opm::UgGridHelpers::numCells(grid_), Opm::UgGridHelpers::globalCell(grid_), Opm::UgGridHelpers::cartDims(grid_), Opm::UgGridHelpers::dimensions(grid_), Opm::UgGridHelpers::cell2Faces(grid_), Opm::UgGridHelpers::beginFaceCentroids(grid_), props_.permeability(), is_parallel_run_, well_potentials); const Wells* wells = wells_manager.c_wells(); WellState well_state; well_state.init(wells, state, prev_well_state); // give the polymer and surfactant simulators the chance to do their stuff asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells); // write simulation state at the report stage output_writer_.writeTimeStep( timer, state, well_state ); // Max oil saturation (for VPPARS), hysteresis update. props_.updateSatOilMax(state.saturation()); props_.updateSatHyst(state.saturation(), allcells_); // Compute reservoir volumes for RESV controls. asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state); // Run a multiple steps of the solver depending on the time step control. solver_timer.start(); const WellModel well_model(wells); auto solver = asImpl().createSolver(well_model); std::ostringstream step_msg; boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y"); step_msg.imbue(std::locale(std::locale::classic(), facet)); step_msg << "\nTime step " << std::setw(4) <step( timer, *solver, state, well_state, output_writer_ ); } else { // solve for complete report step solver->step(timer.currentStepLength(), state, well_state); std::ostringstream iter_msg; iter_msg << "Stepsize " << (double)unit::convert::to(timer.currentStepLength(), unit::day); if (solver->wellIterations() != std::numeric_limits::min()) { iter_msg << " days well iterations = " << solver->wellIterations() << ", "; } iter_msg << "non-linear iterations = " << solver->nonlinearIterations() << ", total linear iterations = " << solver->linearIterations() << "\n"; OpmLog::info(iter_msg.str()); } // update the derived geology (transmissibilities, pore volumes, etc) if the // has geology changed for the next report step const int nextTimeStepIdx = timer.currentStepNum() + 1; if (nextTimeStepIdx < timer.numSteps() && events.hasEvent(ScheduleEvents::GEO_MODIFIER, nextTimeStepIdx)) { // bring the contents of the keywords to the current state of the SCHEDULE // section // // TODO (?): handle the parallel case (maybe this works out of the box) DeckConstPtr miniDeck = schedule->getModifierDeck(nextTimeStepIdx); eclipse_state_->applyModifierDeck(miniDeck); geo_.update(grid_, props_, eclipse_state_, gravity_); } // take time that was used to solve system for this reportStep solver_timer.stop(); // accumulate the number of nonlinear and linear Iterations totalNonlinearIterations += solver->nonlinearIterations(); totalLinearIterations += solver->linearIterations(); // Report timing. const double st = solver_timer.secsSinceStart(); // accumulate total time stime += st; if ( terminal_output_ ) { std::string msg; msg = "Fully implicit solver took: " + std::to_string(st) + " seconds. Total solver time taken: " + std::to_string(stime) + " seconds."; OpmLog::note(msg); } if ( output_writer_.output() ) { SimulatorReport step_report; step_report.pressure_time = st; step_report.total_time = step_timer.secsSinceStart(); step_report.reportParam(tstep_os); } // Increment timer, remember well state. ++timer; prev_well_state = well_state; // The well potentials are only computed if they are needed // For now thay are only used to determine default guide rates for group controlled wells if ( is_well_potentials_computed ) { asImpl().computeWellPotentials(wells, well_state, well_potentials); } } // Write final simulation state. output_writer_.writeTimeStep( timer, state, prev_well_state ); // Stop timer and create timing report total_timer.stop(); SimulatorReport report; report.pressure_time = stime; report.transport_time = 0.0; report.total_time = total_timer.secsSinceStart(); report.total_newton_iterations = totalNonlinearIterations; report.total_linear_iterations = totalLinearIterations; return report; } namespace SimFIBODetails { typedef std::unordered_map WellMap; inline WellMap mapWells(const std::vector< const Well* >& wells) { WellMap wmap; for (std::vector< const Well* >::const_iterator w = wells.begin(), e = wells.end(); w != e; ++w) { wmap.insert(std::make_pair((*w)->name(), *w)); } return wmap; } inline int resv_control(const WellControls* ctrl) { int i, n = well_controls_get_num(ctrl); bool match = false; for (i = 0; (! match) && (i < n); ++i) { match = well_controls_iget_type(ctrl, i) == RESERVOIR_RATE; } if (! match) { i = 0; } return i - 1; // -1 if no match, undo final "++" otherwise } inline bool is_resv(const Wells& wells, const int w) { return (0 <= resv_control(wells.ctrls[w])); } inline bool is_resv(const WellMap& wmap, const std::string& name, const std::size_t step) { bool match = false; WellMap::const_iterator i = wmap.find(name); if (i != wmap.end()) { const Well* wp = i->second; match = (wp->isProducer(step) && wp->getProductionProperties(step) .hasProductionControl(WellProducer::RESV)) || (wp->isInjector(step) && wp->getInjectionProperties(step) .hasInjectionControl(WellInjector::RESV)); } return match; } inline std::vector resvWells(const Wells* wells, const std::size_t step, const WellMap& wmap) { std::vector resv_wells; if( wells ) { for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) { if (is_resv(*wells, w) || ((wells->name[w] != 0) && is_resv(wmap, wells->name[w], step))) { resv_wells.push_back(w); } } } return resv_wells; } inline void historyRates(const PhaseUsage& pu, const WellProductionProperties& p, std::vector& rates) { assert (! p.predictionMode); assert (rates.size() == std::vector::size_type(pu.num_phases)); if (pu.phase_used[ BlackoilPhases::Aqua ]) { const std::vector::size_type i = pu.phase_pos[ BlackoilPhases::Aqua ]; rates[i] = p.WaterRate; } if (pu.phase_used[ BlackoilPhases::Liquid ]) { const std::vector::size_type i = pu.phase_pos[ BlackoilPhases::Liquid ]; rates[i] = p.OilRate; } if (pu.phase_used[ BlackoilPhases::Vapour ]) { const std::vector::size_type i = pu.phase_pos[ BlackoilPhases::Vapour ]; rates[i] = p.GasRate; } } } // namespace SimFIBODetails template void SimulatorBase::handleAdditionalWellInflow(SimulatorTimer& /* timer */, WellsManager& /* wells_manager */, WellState& /* well_state */, const Wells* /* wells */) { } template auto SimulatorBase::createSolver(const WellModel& well_model) -> std::unique_ptr { auto model = std::unique_ptr(new Model(model_param_, grid_, props_, geo_, rock_comp_props_, well_model, solver_, eclipse_state_, has_disgas_, has_vapoil_, terminal_output_)); if (!threshold_pressures_by_face_.empty()) { model->setThresholdPressures(threshold_pressures_by_face_); } return std::unique_ptr(new Solver(solver_param_, std::move(model))); } template void SimulatorBase::computeWellPotentials(const Wells* wells, const WellState& xw, std::vector& well_potentials) { const int nw = wells->number_of_wells; const int np = wells->number_of_phases; well_potentials.clear(); well_potentials.resize(nw*np,0.0); for (int w = 0; w < nw; ++w) { for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) { for (int phase = 0; phase < np; ++phase) { well_potentials[w*np + phase] += xw.wellPotentials()[perf*np + phase]; } } } } template void SimulatorBase::computeRESV(const std::size_t step, const Wells* wells, const BlackoilState& x, WellState& xw) { typedef SimFIBODetails::WellMap WellMap; const auto w_ecl = eclipse_state_->getSchedule()->getWells(step); const WellMap& wmap = SimFIBODetails::mapWells(w_ecl); const std::vector& resv_wells = SimFIBODetails::resvWells(wells, step, wmap); const std::size_t number_resv_wells = resv_wells.size(); std::size_t global_number_resv_wells = number_resv_wells; #if HAVE_MPI if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) ) { const auto& info = boost::any_cast(solver_.parallelInformation()); global_number_resv_wells = info.communicator().sum(global_number_resv_wells); if ( global_number_resv_wells ) { // At least one process has resv wells. Therefore rate converter needs // to calculate averages over regions that might cross process // borders. This needs to be done by all processes and therefore // outside of the next if statement. rateConverter_.defineState(x, boost::any_cast(solver_.parallelInformation())); } } else #endif { if ( global_number_resv_wells ) { rateConverter_.defineState(x); } } if (! resv_wells.empty()) { const PhaseUsage& pu = props_.phaseUsage(); const std::vector::size_type np = props_.numPhases(); std::vector distr (np); std::vector hrates(np); std::vector prates(np); for (std::vector::const_iterator rp = resv_wells.begin(), e = resv_wells.end(); rp != e; ++rp) { WellControls* ctrl = wells->ctrls[*rp]; const bool is_producer = wells->type[*rp] == PRODUCER; // RESV control mode, all wells { const int rctrl = SimFIBODetails::resv_control(ctrl); if (0 <= rctrl) { const std::vector::size_type off = (*rp) * np; if (is_producer) { // Convert to positive rates to avoid issues // in coefficient calculations. std::transform(xw.wellRates().begin() + (off + 0*np), xw.wellRates().begin() + (off + 1*np), prates.begin(), std::negate()); } else { std::copy(xw.wellRates().begin() + (off + 0*np), xw.wellRates().begin() + (off + 1*np), prates.begin()); } const int fipreg = 0; // Hack. Ignore FIP regions. rateConverter_.calcCoeff(prates, fipreg, distr); well_controls_iset_distr(ctrl, rctrl, & distr[0]); } } // RESV control, WCONHIST wells. A bit of duplicate // work, regrettably. if (is_producer && wells->name[*rp] != 0) { WellMap::const_iterator i = wmap.find(wells->name[*rp]); if (i != wmap.end()) { const auto* wp = i->second; const WellProductionProperties& p = wp->getProductionProperties(step); if (! p.predictionMode) { // History matching (WCONHIST/RESV) SimFIBODetails::historyRates(pu, p, hrates); const int fipreg = 0; // Hack. Ignore FIP regions. rateConverter_.calcCoeff(hrates, fipreg, distr); // WCONHIST/RESV target is sum of all // observed phase rates translated to // reservoir conditions. Recall sign // convention: Negative for producers. const double target = - std::inner_product(distr.begin(), distr.end(), hrates.begin(), 0.0); well_controls_clear(ctrl); well_controls_assert_number_of_phases(ctrl, int(np)); static const double invalid_alq = -std::numeric_limits::max(); static const int invalid_vfp = -std::numeric_limits::max(); const int ok_resv = well_controls_add_new(RESERVOIR_RATE, target, invalid_alq, invalid_vfp, & distr[0], ctrl); // For WCONHIST the BHP limit is set to 1 atm. // or a value specified using WELTARG double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm); const int ok_bhp = well_controls_add_new(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, ctrl); if (ok_resv != 0 && ok_bhp != 0) { xw.currentControls()[*rp] = 0; well_controls_set_current(ctrl, 0); } } } } } } if( wells ) { for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) { WellControls* ctrl = wells->ctrls[w]; const bool is_producer = wells->type[w] == PRODUCER; if (!is_producer && wells->name[w] != 0) { WellMap::const_iterator i = wmap.find(wells->name[w]); if (i != wmap.end()) { const auto* wp = i->second; const WellInjectionProperties& injector = wp->getInjectionProperties(step); if (!injector.predictionMode) { //History matching WCONINJEH static const double invalid_alq = -std::numeric_limits::max(); static const int invalid_vfp = -std::numeric_limits::max(); // For WCONINJEH the BHP limit is set to a large number // or a value specified using WELTARG double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits::max(); const int ok_bhp = well_controls_add_new(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, ctrl); if (!ok_bhp) { OPM_THROW(std::runtime_error, "Failed to add well control."); } } } } } } } } // namespace Opm