// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::EclWriter
*/
#ifndef EWOMS_ECL_WRITER_HH
#define EWOMS_ECL_WRITER_HH
#include "collecttoiorank.hh"
#include "ecloutputblackoilmodule.hh"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(EnableEclOutput);
}
template
class EclWriter;
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Collects necessary output values and pass it to opm-output.
*
* Caveats:
* - For this class to do do anything meaningful, you will have to
* have the OPM module opm-output.
* - The only DUNE grid which is currently supported is Dune::CpGrid
* from the OPM module "opm-grid". Using another grid won't
* fail at compile time but you will provoke a fatal exception as
* soon as you try to write an ECL output file.
* - This class requires to use the black oil model with the element
* centered finite volume discretization.
*/
template
class EclWriter
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, GridManager) GridManager;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
typedef CollectDataToIORank< GridManager > CollectDataToIORankType;
typedef std::vector ScalarBuffer;
public:
EclWriter(const Simulator& simulator)
: simulator_(simulator)
, eclOutputModule_(simulator)
, collectToIORank_(simulator_.gridManager())
{
globalGrid_ = simulator_.gridManager().grid();
globalGrid_.switchToGlobalView();
eclIO_.reset(new Opm::EclipseIO(simulator_.gridManager().eclState(),
Opm::UgGridHelpers::createEclipseGrid( globalGrid_ , simulator_.gridManager().eclState().getInputGrid() ),
simulator_.gridManager().schedule(),
simulator_.gridManager().summaryConfig()));
}
~EclWriter()
{ }
const Opm::EclipseIO& eclIO() const
{ return *eclIO_; }
void writeInit()
{
#if !HAVE_OPM_OUTPUT
OPM_THROW(std::runtime_error,
"Opm-output must be available to write ECL output!");
#else
if (collectToIORank_.isIORank()) {
std::map > integerVectors;
if (collectToIORank_.isParallel())
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
eclIO_->writeInitial(computeTrans_(), integerVectors, exportNncStructure_());
}
#endif
}
/*!
* \brief collect and pass data and pass it to eclIO writer
*/
void writeOutput(const Opm::data::Wells& dw, Scalar t, bool substep, Scalar totalSolverTime, Scalar nextstep)
{
#if !HAVE_OPM_OUTPUT
OPM_THROW(std::runtime_error,
"Opm-output must be available to write ECL output!");
#else
int episodeIdx = simulator_.episodeIndex() + 1;
const auto& gridView = simulator_.gridManager().gridView();
int numElements = gridView.size(/*codim=*/0);
bool log = collectToIORank_.isIORank();
eclOutputModule_.allocBuffers(numElements, episodeIdx, simulator_.gridManager().eclState().getRestartConfig(), substep, log);
ElementContext elemCtx(simulator_);
ElementIterator elemIt = gridView.template begin*codim=*/0>();
const ElementIterator& elemEndIt = gridView.template end*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
eclOutputModule_.processElement(elemCtx);
}
eclOutputModule_.outputErrorLog();
// collect all data to I/O rank and assign to sol
Opm::data::Solution localCellData;
eclOutputModule_.assignToSolution(localCellData);
if (collectToIORank_.isParallel())
collectToIORank_.collect(localCellData);
if (!substep)
eclOutputModule_.outputFIPLog();
// write output on I/O rank
if (collectToIORank_.isIORank()) {
std::map> extraRestartData;
std::map miscSummaryData;
// Add suggested next timestep to extra data.
extraRestartData["OPMEXTRA"] = std::vector(1, nextstep);
// Add TCPU if simulatorReport is not defaulted.
if (totalSolverTime != 0.0) {
miscSummaryData["TCPU"] = totalSolverTime;
}
const Opm::data::Solution& cellData = collectToIORank_.isParallel() ? collectToIORank_.globalCellData() : localCellData;
eclIO_->writeTimeStep(episodeIdx,
substep,
t,
cellData,
dw,
miscSummaryData,
extraRestartData,
false);
}
#endif
}
void restartBegin()
{
std::map solution_keys {{"PRESSURE" , Opm::RestartKey(Opm::UnitSystem::measure::pressure)},
{"SWAT" , Opm::RestartKey(Opm::UnitSystem::measure::identity)},
{"SGAS" , Opm::RestartKey(Opm::UnitSystem::measure::identity)},
{"TEMP" , Opm::RestartKey(Opm::UnitSystem::measure::temperature)},
{"RS" , Opm::RestartKey(Opm::UnitSystem::measure::gas_oil_ratio)},
{"RV" , Opm::RestartKey(Opm::UnitSystem::measure::oil_gas_ratio)},
{"SOMAX", {Opm::UnitSystem::measure::identity, false}},
{"PCSWM_OW", {Opm::UnitSystem::measure::identity, false}},
{"KRNSW_OW", {Opm::UnitSystem::measure::identity, false}},
{"PCSWM_GO", {Opm::UnitSystem::measure::identity, false}},
{"KRNSW_GO", {Opm::UnitSystem::measure::identity, false}}};
std::map extra_keys {
{"OPMEXTRA" , false}
};
unsigned episodeIdx = simulator_.episodeIndex();
const auto& gridView = simulator_.gridManager().gridView();
unsigned numElements = gridView.size(/*codim=*/0);
eclOutputModule_.allocBuffers(numElements, episodeIdx, simulator_.gridManager().eclState().getRestartConfig(), false, false);
auto restart_values = eclIO_->loadRestart(solution_keys, extra_keys);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
unsigned globalIdx = collectToIORank_.localIdxToGlobalIdx(elemIdx);
eclOutputModule_.setRestart(restart_values.solution, elemIdx, globalIdx);
}
}
const EclOutputBlackOilModule& eclOutputModule() const {
return eclOutputModule_;
}
private:
static bool enableEclOutput_()
{ return EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput); }
Opm::data::Solution computeTrans_() const
{
const auto& cartMapper = simulator_.gridManager().cartesianIndexMapper();
const auto& cartDims = cartMapper.cartesianDimensions();
const int globalSize = cartDims[0]*cartDims[1]*cartDims[2];
Opm::data::CellData tranx = {Opm::UnitSystem::measure::transmissibility, std::vector( globalSize ), Opm::data::TargetType::INIT};
Opm::data::CellData trany = {Opm::UnitSystem::measure::transmissibility, std::vector( globalSize ), Opm::data::TargetType::INIT};
Opm::data::CellData tranz = {Opm::UnitSystem::measure::transmissibility, std::vector( globalSize ), Opm::data::TargetType::INIT};
for (size_t i = 0; i < tranx.data.size(); ++i) {
tranx.data[0] = 0.0;
trany.data[0] = 0.0;
tranz.data[0] = 0.0;
}
const auto& globalGridView = globalGrid_.leafGridView();
typedef typename Grid::LeafGridView GridView;
typedef Dune::MultipleCodimMultipleGeomTypeMapper ElementMapper;
ElementMapper globalElemMapper(globalGridView);
const auto& cartesianCellIdx = globalGrid_.globalCell();
const auto* globalTrans = &(simulator_.gridManager().globalTransmissibility());
if (!collectToIORank_.isParallel()) {
// in the sequential case we must use the transmissibilites defined by
// the problem. (because in the sequential case, the grid manager does
// not compute "global" transmissibilities for performance reasons. in
// the parallel case, the problem's transmissibilities can't be used
// because this object refers to the distributed grid and we need the
// sequential version here.)
globalTrans = &simulator_.problem().eclTransmissibilities();
}
auto elemIt = globalGridView.template begin*codim=*/0>();
const auto& elemEndIt = globalGridView.template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
{
continue; // intersection is on the domain boundary
}
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
{
continue; // we only need to handle each connection once, thank you.
}
int gc1 = std::min(cartesianCellIdx[c1], cartesianCellIdx[c2]);
int gc2 = std::max(cartesianCellIdx[c1], cartesianCellIdx[c2]);
if (gc2 - gc1 == 1) {
tranx.data[gc1] = globalTrans->transmissibility(c1, c2);
}
if (gc2 - gc1 == cartDims[0]) {
trany.data[gc1] = globalTrans->transmissibility(c1, c2);
}
if (gc2 - gc1 == cartDims[0]*cartDims[1]) {
tranz.data[gc1] = globalTrans->transmissibility(c1, c2);
}
}
}
return {{"TRANX" , tranx},
{"TRANY" , trany} ,
{"TRANZ" , tranz}};
}
Opm::NNC exportNncStructure_() const
{
Opm::NNC nnc = eclState().getInputNNC();
int nx = eclState().getInputGrid().getNX();
int ny = eclState().getInputGrid().getNY();
const auto& globalGridView = globalGrid_.leafGridView();
typedef typename Grid::LeafGridView GridView;
typedef Dune::MultipleCodimMultipleGeomTypeMapper ElementMapper;
ElementMapper globalElemMapper(globalGridView);
const auto* globalTrans = &(simulator_.gridManager().globalTransmissibility());
if (!collectToIORank_.isParallel()) {
// in the sequential case we must use the transmissibilites defined by
// the problem. (because in the sequential case, the grid manager does
// not compute "global" transmissibilities for performance reasons. in
// the parallel case, the problem's transmissibilities can't be used
// because this object refers to the distributed grid and we need the
// sequential version here.)
globalTrans = &simulator_.problem().eclTransmissibilities();
}
auto elemIt = globalGridView.template begin*codim=*/0>();
const auto& elemEndIt = globalGridView.template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
{
continue; // intersection is on the domain boundary
}
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
{
continue; // we only need to handle each connection once, thank you.
}
// TODO (?): use the cartesian index mapper to make this code work
// with grids other than Dune::CpGrid. The problem is that we need
// the a mapper for the sequential grid, not for the distributed one.
int cc1 = globalGrid_.globalCell()[c1];
int cc2 = globalGrid_.globalCell()[c2];
if (std::abs(cc1 - cc2) != 1 &&
std::abs(cc1 - cc2) != nx &&
std::abs(cc1 - cc2) != nx*ny)
{
nnc.addNNC(cc1, cc2, globalTrans->transmissibility(c1, c2));
}
}
}
return nnc;
}
const Opm::EclipseState& eclState() const
{ return simulator_.gridManager().eclState(); }
const Simulator& simulator_;
EclOutputBlackOilModule eclOutputModule_;
CollectDataToIORankType collectToIORank_;
std::unique_ptr eclIO_;
Grid globalGrid_;
};
} // namespace Ewoms
#endif