// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::co2ptflashproblem
*/
#ifndef OPM_CO2PTFLASH_PROBLEM_HH
#define OPM_CO2PTFLASH_PROBLEM_HH
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class CO2PTProblem;
} // namespace Opm */
namespace Opm::Properties {
namespace TTag {
struct CO2PTBaseProblem {};
} // end namespace TTag
template
struct NumComp { using type = UndefinedProperty; };
template
struct NumComp {
static constexpr int value = 3;
};
// Set the grid type: --->2D
template
struct Grid { using type = Dune::YaspGrid*dim=*/2>; };
// Set the problem property
template
struct Problem
{ using type = Opm::CO2PTProblem; };
// Set flash solver
template
struct FlashSolver {
private:
using Scalar = GetPropType;
using FluidSystem = GetPropType;
using Evaluation = GetPropType;
public:
using type = Opm::PTFlash;
};
// Set fluid configuration
template
struct FluidSystem
{
private:
using Scalar = GetPropType;
static constexpr int num_comp = getPropValue();
public:
using type = Opm::GenericOilGasFluidSystem;
};
// Set the material Law
template
struct MaterialLaw {
private:
using FluidSystem = GetPropType;
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
using Scalar = GetPropType;
using Traits = Opm::TwoPhaseMaterialTraits;
// define the material law which is parameterized by effective saturation
using EffMaterialLaw = Opm::NullMaterial;
//using EffMaterialLaw = Opm::BrooksCorey;
public:
using type = EffMaterialLaw;
};
// mesh grid
template
struct Vanguard {
using type = Opm::StructuredGridVanguard;
};
template
struct EnableEnergy {
static constexpr bool value = false;
};
} // namespace Opm::Properties
namespace Opm::Parameters {
// this is kinds of telling the report step length
template
struct EpisodeLength { static constexpr Scalar value = 0.1 * 60. * 60.; };
template
struct Initialpressure { static constexpr Scalar value = 75e5; };
struct SimulationName { static constexpr auto value = "co2_ptflash"; };
// set the defaults for the problem specific properties
template
struct Temperature { static constexpr Scalar value = 423.25; };
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief 3 component simple testproblem with ["CO2", "C1", "C10"]
*
*/
template
class CO2PTProblem : public GetPropType
{
using ParentType = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using GridView = GetPropType;
using FluidSystem = GetPropType;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
using Indices = GetPropType;
using PrimaryVariables = GetPropType;
using RateVector = GetPropType;
using BoundaryRateVector = GetPropType;
using MaterialLaw = GetPropType;
using Simulator = GetPropType;
using Model = GetPropType;
using MaterialLawParams = GetPropType;
using Toolbox = Opm::MathToolbox;
using CoordScalar = typename GridView::ctype;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numComponents = getPropValue() };
enum { enableEnergy = getPropValue() };
enum { enableDiffusion = getPropValue() };
using GlobalPosition = Dune::FieldVector;
using DimMatrix = Dune::FieldMatrix;
using DimVector = Dune::FieldVector;
using ComponentVector = Dune::FieldVector;
using FlashSolver = GetPropType;
public:
using FluidState = Opm::CompositionalFluidState;
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
explicit CO2PTProblem(Simulator& simulator)
: ParentType(simulator)
{
const Scalar epi_len = Parameters::Get>();
simulator.setEpisodeLength(epi_len);
FluidSystem::init();
using CompParm = typename FluidSystem::ComponentParam;
using CO2 = Opm::SimpleCO2;
using C1 = Opm::C1;
using C10 = Opm::C10;
FluidSystem::addComponent(CompParm {CO2::name(), CO2::molarMass(), CO2::criticalTemperature(),
CO2::criticalPressure(), CO2::criticalVolume(), CO2::acentricFactor()});
FluidSystem::addComponent(CompParm {C1::name(), C1::molarMass(), C1::criticalTemperature(),
C1::criticalPressure(), C1::criticalVolume(), C1::acentricFactor()});
FluidSystem::addComponent(CompParm{C10::name(), C10::molarMass(), C10::criticalTemperature(),
C10::criticalPressure(), C10::criticalVolume(), C10::acentricFactor()});
// FluidSystem::add
}
void initPetrophysics()
{
temperature_ = Parameters::Get>();
K_ = this->toDimMatrix_(9.869232667160131e-14);
porosity_ = 0.1;
}
template
const DimVector&
gravity([[maybe_unused]]const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
return gravity();
}
const DimVector& gravity() const
{
return gravity_;
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
// initialize fixed parameters; temperature, permeability, porosity
initPetrophysics();
}
/*!
* \copydoc co2ptflashproblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::Register>
("The temperature [K] in the reservoir");
Parameters::Register>
("The initial pressure [Pa s] in the reservoir");
Parameters::Register
("The name of the simulation used for the output files");
Parameters::Register>
("Time interval [s] for episode length");
Parameters::SetDefault(30);
Parameters::SetDefault>(300.0);
if constexpr (dim > 1) {
Parameters::SetDefault(1);
Parameters::SetDefault>(1.0);
}
if constexpr (dim == 3) {
Parameters::SetDefault(1);
Parameters::SetDefault>(1.0);
}
Parameters::SetDefault>(60. * 60.);
Parameters::SetDefault>(0.1 * 60. * 60.);
Parameters::SetDefault(30);
Parameters::SetDefault(6);
Parameters::SetDefault>(1e-3);
Parameters::SetDefault(true);
Parameters::SetDefault(true);
Parameters::SetDefault(true);
Parameters::SetDefault(true);
Parameters::SetDefault(true);
Parameters::SetDefault(true);
Parameters::SetDefault(true);
Parameters::SetDefault>(0.0);
Parameters::SetDefault>(1e-3);
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << Parameters::Get();
return oss.str();
}
// This method must be overridden for the simulator to continue with
// a new episode. We just start a new episode with the same length as
// the old one.
void endEpisode()
{
Scalar epi_len = Parameters::Get>();
this->simulator().startNextEpisode(epi_len);
}
// only write output when episodes change, aka. report steps, and
// include the initial timestep too
bool shouldWriteOutput()
{
return this->simulator().episodeWillBeOver() || (this->simulator().timeStepIndex() == -1);
}
// we don't care about doing restarts from every fifth timestep, it
// will just slow us down
bool shouldWriteRestartFile()
{
return false;
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
Scalar tol = this->model().newtonMethod().tolerance() * 1e5;
this->model().checkConservativeness(tol);
// Calculate storage terms
PrimaryVariables storageO, storageW;
this->model().globalPhaseStorage(storageO, oilPhaseIdx);
// Calculate storage terms
PrimaryVariables storageL, storageG;
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/0);
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/1);
// Write mass balance information for rank 0
// if (this->gridView().comm().rank() == 0) {
// std::cout << "Storage: liquid=[" << storageL << "]"
// << " gas=[" << storageG << "]\n" << std::flush;
// }
}
/*!
* \copydoc FvBaseProblem::initial
*/
template
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
Opm::CompositionalFluidState fs;
initialFluidState(fs, context, spaceIdx, timeIdx);
values.assignNaive(fs);
}
// Constant temperature
template
Scalar temperature([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned spaceIdx, [[maybe_unused]] unsigned timeIdx) const
{
return temperature_;
}
// Constant permeability
template
const DimMatrix& intrinsicPermeability([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
return K_;
}
// Constant porosity
template
Scalar porosity([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned spaceIdx, [[maybe_unused]] unsigned timeIdx) const
{
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int inj = 0;
int prod = Parameters::Get() - 1;
if (spatialIdx == inj || spatialIdx == prod) {
return 1.0;
} else {
return porosity_;
}
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template
const MaterialLawParams& materialLawParams([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
return this->mat_;
}
// No flow (introduce fake wells instead)
template
void boundary(BoundaryRateVector& values,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ values.setNoFlow(); }
// No source terms
template
void source(RateVector& source_rate,
[[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
source_rate = Scalar(0.0);
}
private:
/*!
* \copydoc FvBaseProblem::initial
*/
template
void initialFluidState(FluidState& fs, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// z0 = [0.5, 0.3, 0.2]
// zi = [0.99, 0.01-1e-3, 1e-3]
// p0 = 75e5
// T0 = 423.25
int inj = 0;
int prod = Parameters::Get() - 1;
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
ComponentVector comp;
comp[0] = Evaluation::createVariable(0.5, 1);
comp[1] = Evaluation::createVariable(0.3, 2);
comp[2] = 1. - comp[0] - comp[1];
if (spatialIdx == inj) {
comp[0] = Evaluation::createVariable(0.99, 1);
comp[1] = Evaluation::createVariable(0.01 - 1e-3, 2);
comp[2] = 1. - comp[0] - comp[1];
}
ComponentVector sat;
sat[0] = 1.0;
sat[1] = 1.0 - sat[0];
Scalar p0 = Parameters::Get>();
//\Note, for an AD variable, if we multiply it with 2, the derivative will also be scalced with 2,
//\Note, so we should not do it.
if (spatialIdx == inj) {
p0 *= 2.0;
}
if (spatialIdx == prod) {
p0 *= 0.5;
}
Evaluation p_init = Evaluation::createVariable(p0, 0);
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
fs.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, comp[compIdx]);
fs.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, comp[compIdx]);
}
// It is used here only for calculate the z
fs.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
fs.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
fs.setTemperature(temperature_);
// ParameterCache paramCache;
{
typename FluidSystem::template ParameterCache paramCache;
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
fs.setViscosity(FluidSystem::oilPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::oilPhaseIdx));
fs.setViscosity(FluidSystem::gasPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::gasPhaseIdx));
}
// determine the component total fractions
// TODO: duplicated code here, while should be refactored out when we swithing
// to starting from total mole fractions
Dune::FieldVector z(0.0);
Scalar sumMoles = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const auto saturation = getValue(fs.saturation(phaseIdx));
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar tmp = getValue(fs.molarity(phaseIdx, compIdx)) * saturation;
tmp = max(tmp, 1.e-8);
z[compIdx] += tmp;
sumMoles += tmp;
}
}
z /= sumMoles;
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
fs.setMoleFraction(compIdx, z[compIdx]);
}
// Set initial K and L
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation Ktmp = fs.wilsonK_(compIdx);
fs.setKvalue(compIdx, Ktmp);
}
const Evaluation& Ltmp = -1.0;
fs.setLvalue(Ltmp);
}
DimMatrix K_;
Scalar porosity_;
Scalar temperature_;
MaterialLawParams mat_;
DimVector gravity_;
};
} // namespace Opm
#endif