/*
Copyright 2018 Equinor ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#define BOOST_TEST_MODULE WellStateFIBOTest
#include
#include "MpiFixture.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
BOOST_GLOBAL_FIXTURE(MPIFixture);
struct Setup
{
Setup(const std::string& filename)
: Setup(Opm::Parser{}.parseFile(filename))
{}
Setup(const Opm::Deck& deck)
: es (deck)
, pu (Opm::phaseUsageFromDeck(es))
, grid (es.getInputGrid())
, sched(deck, es, std::make_shared())
, st { Opm::TimeService::from_time_t(sched.getStartTime()),
es.runspec().udqParams().undefinedValue() }
{
initWellPerfData();
}
void initWellPerfData()
{
const auto& wells = sched.getWells(0);
const auto& cartDims = Opm::UgGridHelpers::cartDims(*grid.c_grid());
const int* compressed_to_cartesian = Opm::UgGridHelpers::globalCell(*grid.c_grid());
std::vector cartesian_to_compressed(cartDims[0] * cartDims[1] * cartDims[2], -1);
for (int ii = 0; ii < Opm::UgGridHelpers::numCells(*grid.c_grid()); ++ii) {
cartesian_to_compressed[compressed_to_cartesian[ii]] = ii;
}
well_perf_data.resize(wells.size());
int well_index = 0;
for (const auto& well : wells) {
well_perf_data[well_index].clear();
well_perf_data[well_index].reserve(well.getConnections().size());
for (const auto& completion : well.getConnections()) {
if (completion.state() == Opm::Connection::State::OPEN) {
const int i = completion.getI();
const int j = completion.getJ();
const int k = completion.getK();
const int cart_grid_indx = i + cartDims[0] * (j + cartDims[1] * k);
const int active_index = cartesian_to_compressed[cart_grid_indx];
if (active_index < 0) {
const std::string msg
= ("Cell with i,j,k indices " + std::to_string(i) + " " + std::to_string(j) + " "
+ std::to_string(k) + " not found in grid (well = " + well.name() + ").");
OPM_THROW(std::runtime_error, msg);
} else {
Opm::PerforationData pd;
pd.cell_index = active_index;
pd.connection_transmissibility_factor = completion.CF();
pd.connection_d_factor = completion.dFactor();
pd.satnum_id = completion.satTableId();
well_perf_data[well_index].push_back(pd);
}
} else {
if (completion.state() != Opm::Connection::State::SHUT) {
OPM_THROW(std::runtime_error,
"Completion state: " +
Opm::Connection::State2String(completion.state()) +
" not handled");
}
}
}
++well_index;
}
}
Opm::EclipseState es;
Opm::PhaseUsage pu;
Opm::GridManager grid;
std::shared_ptr python;
Opm::Schedule sched;
Opm::SummaryState st;
std::vector>> well_perf_data;
};
namespace {
Opm::WellState
buildWellState(const Setup& setup, const std::size_t timeStep,
std::vector>& pinfos)
{
auto state = Opm::WellState{setup.pu};
const auto cpress =
std::vector(setup.grid.c_grid()->number_of_cells,
100.0*Opm::unit::barsa);
const auto& unit_sytem = setup.es.getDeckUnitSystem();
const double temp = unit_sytem.to_si(Opm::UnitSystem::measure::temperature, 25);
const auto ctemp =
std::vector(setup.grid.c_grid()->number_of_cells,
temp);
auto wells = setup.sched.getWells(timeStep);
pinfos.resize(wells.size());
std::vector>> ppinfos;
auto pw = pinfos.begin();
for (const auto& well : wells)
{
*pw = {well.name()};
ppinfos.push_back(std::ref(*pw));
pw->communicateFirstPerforation(true);
++pw;
}
state.init(cpress, ctemp, setup.sched,
wells, ppinfos,
timeStep, nullptr, setup.well_perf_data, setup.st,
false /*enableDistributedWells*/);
state.initWellStateMSWell(setup.sched.getWells(timeStep),
nullptr);
return state;
}
void setSegPress(const std::vector& wells,
Opm::WellState& wstate)
{
const auto nWell = wells.size();
for (auto wellID = 0*nWell; wellID < nWell; ++wellID) {
const auto& well = wells[wellID];
if (! well.isMultiSegment()) {
continue;
}
const auto pressTop = 100.0 * wellID;
auto& ws = wstate.well(wellID);
auto& segments = ws.segments;
segments.pressure[0] = pressTop;
const auto& segSet = well.getSegments();
const auto nSeg = segSet.size();
for (auto segID = 0*nSeg + 1; segID < nSeg; ++segID) {
// One-based numbering scheme for segments.
const auto segNo = segSet[segID].segmentNumber();
segments.pressure[segNo - 1] = pressTop + 1.0*(segNo - 1);
}
}
}
void setSegRates(const std::vector& wells,
const Opm::PhaseUsage& pu,
Opm::WellState& wstate)
{
const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua];
const auto iw = wat ? pu.phase_pos[Opm::BlackoilPhases::Aqua] : -1;
const auto oil = pu.phase_used[Opm::BlackoilPhases::Liquid];
const auto io = oil ? pu.phase_pos[Opm::BlackoilPhases::Liquid] : -1;
const auto gas = pu.phase_used[Opm::BlackoilPhases::Vapour];
const auto ig = gas ? pu.phase_pos[Opm::BlackoilPhases::Vapour] : -1;
const auto np = wstate.numPhases();
const auto nWell = wells.size();
for (auto wellID = 0*nWell; wellID < nWell; ++wellID) {
const auto& well = wells[wellID];
if (! well.isMultiSegment()) {
continue;
}
const auto rateTop = 1000.0 * wellID;
auto& ws = wstate.well(wellID);
auto& segments = ws.segments;
auto& segRates = segments.rates;
if (wat) { segRates[iw] = rateTop; }
if (oil) { segRates[io] = rateTop; }
if (gas) { segRates[ig] = rateTop; }
const auto& segSet = well.getSegments();
const auto nSeg = segSet.size();
for (auto segID = 0*nSeg + 1; segID < nSeg; ++segID) {
// One-based numbering scheme for segments.
const auto segNo = segSet[segID].segmentNumber();
auto* rates = &segRates[(segNo - 1) * np];
if (wat) { rates[iw] = rateTop + 100.0*(segNo - 1); }
if (oil) { rates[io] = rateTop + 200.0*(segNo - 1); }
if (gas) { rates[ig] = rateTop + 400.0*(segNo - 1); }
}
}
}
} // Anonymous
BOOST_AUTO_TEST_SUITE(Segment)
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(Linearisation)
{
const Setup setup{ "msw.data" };
const auto tstep = std::size_t{0};
std::vector> pinfos;
const auto wstate = buildWellState(setup, tstep, pinfos);
const auto& ws = wstate.well("PROD01");
BOOST_CHECK_EQUAL(ws.segments.size(), 6);
const auto& wells = setup.sched.getWellsatEnd();
BOOST_CHECK_EQUAL(wells.size(), 2);
}
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(Pressure)
{
const Setup setup{ "msw.data" };
const auto tstep = std::size_t{0};
std::vector> pinfos;
auto wstate = buildWellState(setup, tstep, pinfos);
const auto& wells = setup.sched.getWells(tstep);
const auto prod01_first = wells[0].name() == "PROD01";
setSegPress(wells, wstate);
const auto rpt = wstate.report(setup.grid.c_grid()->global_cell, [](const int){return false;});
{
const auto expect_nSeg = 6;
const auto& xw = rpt.at("PROD01");
BOOST_CHECK_EQUAL(xw.segments.size(), expect_nSeg);
const auto pressTop = prod01_first ? 0.0 : 100.0;
for (auto segID = 0; segID < expect_nSeg; ++segID) {
const auto& xseg = xw.segments.at(segID + 1);
BOOST_CHECK_EQUAL(xseg.segNumber, segID + 1);
const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure;
BOOST_CHECK_CLOSE(xseg.pressures[pres_idx], pressTop + 1.0*segID, 1.0e-10);
}
}
const auto& ws = wstate.well("PROD01");
const auto& perf_data = ws.perf_data;
(void) perf_data;
}
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(Rates)
{
const Setup setup{ "msw.data" };
const auto tstep = std::size_t{0};
std::vector> pinfos;
auto wstate = buildWellState(setup, tstep, pinfos);
const auto wells = setup.sched.getWells(tstep);
const auto prod01_first = wells[0].name() == "PROD01";
const auto& pu = setup.pu;
setSegRates(wells, pu, wstate);
const auto rpt = wstate.report(setup.grid.c_grid()->global_cell, [](const int){return false;});
const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua];
const auto oil = pu.phase_used[Opm::BlackoilPhases::Liquid];
const auto gas = pu.phase_used[Opm::BlackoilPhases::Vapour];
BOOST_CHECK(wat && oil && gas);
{
const auto expect_nSeg = 6;
const auto& xw = rpt.at("PROD01");
BOOST_CHECK_EQUAL(xw.segments.size(), expect_nSeg);
const auto rateTop = prod01_first ? 0.0 : 1000.0;
for (auto segNum = 1; segNum <= expect_nSeg; ++segNum) {
const auto& xseg = xw.segments.at(segNum);
BOOST_CHECK_EQUAL(xseg.segNumber, segNum);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::wat),
rateTop + 100.0*(segNum - 1), 1.0e-10);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::oil),
rateTop + 200.0*(segNum - 1), 1.0e-10);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::gas),
rateTop + 400.0*(segNum - 1), 1.0e-10);
}
}
}
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(STOP_well)
{
/*
This test verifies that the perforation pressures is correctly initialized
also for wells in the STOP state.
*/
const Setup setup{ "wells_manager_data_wellSTOP.data" };
std::vector> pinfos;
auto wstate = buildWellState(setup, 0, pinfos);
for (std::size_t well_index = 0; well_index < setup.sched.numWells(0); well_index++) {
const auto& ws = wstate.well(well_index);
const auto& perf_data = ws.perf_data;
for (const auto& p : perf_data.pressure)
BOOST_CHECK(p > 0);
}
}
// ---------------------------------------------------------------------
//BOOST_AUTO_TEST_CASE(GlobalWellInfo_TEST) {
// const Setup setup{ "msw.data" };
// std::vector local_wells = { setup.sched.getWell("PROD01", 1) };
// Opm::GlobalWellInfo gwi(setup.sched, 1, local_wells);
// Opm::WellContainer status({{"PROD01", Opm::Well::Status::OPEN}});
//
// BOOST_CHECK(!gwi.in_injecting_group("INJE01"));
// BOOST_CHECK(!gwi.in_injecting_group("PROD01"));
// BOOST_CHECK(!gwi.in_producing_group("INJE01"));
// BOOST_CHECK(!gwi.in_producing_group("PROD01"));
//
// BOOST_CHECK_EQUAL( gwi.well_name(0), "INJE01");
// BOOST_CHECK_EQUAL( gwi.well_name(1), "PROD01");
// BOOST_CHECK_EQUAL( gwi.well_index("PROD01"), 1);
//
// BOOST_CHECK_THROW( gwi.update_group( {}, {}, {} ), std::exception);
//
//
// Opm::WellContainer inj_cmode({{"PROD01", Opm::Well::InjectorCMode::CMODE_UNDEFINED}});
// {
// Opm::WellContainer prod_cmode({{"PROD01", Opm::Well::ProducerCMode::GRUP}});
// gwi.update_group(status, inj_cmode, prod_cmode);
// }
// BOOST_CHECK(!gwi.in_producing_group("INJE01"));
// BOOST_CHECK(gwi.in_producing_group("PROD01"));
//
// {
// Opm::WellContainer prod_cmode(
// {{"PROD01", Opm::Well::ProducerCMode::CMODE_UNDEFINED}});
// gwi.update_group(status, inj_cmode, prod_cmode);
// }
//
// {
// Opm::WellContainer prod_cmode({{"PROD01", Opm::Well::ProducerCMode::GRUP}});
// gwi.update_group(status, inj_cmode, prod_cmode);
// }
// BOOST_CHECK(!gwi.in_producing_group("INJE01"));
// BOOST_CHECK(gwi.in_producing_group("PROD01"));
//
// {
// Opm::WellContainer prod_cmode({{"PROD01", Opm::Well::ProducerCMode::NONE}});
// gwi.update_group(status, inj_cmode, prod_cmode);
// }
// BOOST_CHECK(!gwi.in_producing_group("INJE01"));
// BOOST_CHECK(!gwi.in_producing_group("PROD01"));
//}
BOOST_AUTO_TEST_CASE(TESTWellContainer) {
Opm::WellContainer wc;
BOOST_CHECK_EQUAL(wc.size(), 0);
wc.add("W1", 1);
wc.add("W2", 2);
BOOST_CHECK_EQUAL(wc.size(), 2);
BOOST_CHECK_THROW(wc.add("W1", 1), std::exception);
BOOST_CHECK_THROW(wc[10], std::exception);
BOOST_CHECK_EQUAL(wc[0], 1);
BOOST_CHECK_EQUAL(wc[1], 2);
BOOST_CHECK_THROW(wc["INVALID_WELL"], std::exception);
BOOST_CHECK_EQUAL(wc["W1"], 1);
BOOST_CHECK_EQUAL(wc["W2"], 2);
BOOST_CHECK_EQUAL(wc.well_name(0), "W1");
BOOST_CHECK_EQUAL(wc.well_name(1), "W2");
BOOST_CHECK_THROW(wc.well_name(10), std::exception);
const auto& wells = wc.wells();
std::vector expected = {"W1", "W2"};
BOOST_CHECK( std::is_permutation( wells.begin(), wells.end(), expected.begin(), expected.end()) );
Opm::WellContainer wc2;
wc2.copy_welldata(wc);
BOOST_CHECK_EQUAL(wc2.size() , 0);
wc2.add("W1", 100);
BOOST_CHECK_EQUAL(wc2["W1"], 100);
wc2.copy_welldata(wc);
BOOST_CHECK_EQUAL(wc2["W1"], 1);
Opm::WellContainer wc3;
wc3.add("W2", 100);
wc3.copy_welldata(wc);
BOOST_CHECK_EQUAL(wc3["W2"], 2);
BOOST_CHECK_EQUAL(wc3[0], 2);
wc3["W2"] = 200;
wc3.add("W3", 300);
wc3.copy_welldata(wc);
BOOST_CHECK_EQUAL(wc3["W2"], 2);
BOOST_CHECK_EQUAL(wc3[0], 2);
BOOST_CHECK_EQUAL(wc3["W3"], 300);
BOOST_CHECK_EQUAL(wc3[1], 300);
BOOST_CHECK_THROW(wc3.copy_welldata(wc, "W1"), std::exception);
BOOST_CHECK_THROW(wc3.copy_welldata(wc, "W3"), std::exception);
wc.clear();
BOOST_CHECK_EQUAL(wc.size(), 0);
BOOST_CHECK(wc3.has("W2"));
BOOST_CHECK(!wc3.has("NO_SUCH_WELL"));
std::vector vec_copy(wc3.begin(), wc3.end());
BOOST_CHECK_EQUAL(vec_copy.size(), wc3.size());
for (std::size_t i = 0; i < wc3.size(); i++)
BOOST_CHECK_EQUAL(vec_copy[i], wc3[i]);
Opm::WellContainer wci({{"W1", 1}, {"W2", 2}, {"W3", 3}});
BOOST_CHECK_EQUAL(wci.size(), 3);
BOOST_CHECK(wci.has("W1"));
BOOST_CHECK_EQUAL(wci[1], 2);
BOOST_CHECK_EQUAL(wci["W3"], 3);
auto w3 = wci.well_index("W3");
BOOST_CHECK(w3.has_value());
BOOST_CHECK_EQUAL(w3.value(), 2);
auto wx = wci.well_index("WX");
BOOST_CHECK(!wx.has_value());
}
BOOST_AUTO_TEST_CASE(TESTSegmentState) {
const Setup setup{ "msw.data" };
const auto& well = setup.sched.getWell("PROD01", 0);
const auto& segments = well.getSegments();
Opm::SegmentState ss1(3, segments);
Opm::SegmentState ss2;
ss1.pressure_drop_hydrostatic[0] = 1;
ss1.pressure_drop_friction[0] = 2;
ss1.pressure_drop_accel[0] = 3;
BOOST_CHECK_EQUAL(ss1.pressure_drop(0), 6);
}
BOOST_AUTO_TEST_CASE(TESTSegmentState2) {
const Setup setup{ "msw.data" };
std::vector> pinfo;
const auto wstate = buildWellState(setup, 0, pinfo);
const auto& well = setup.sched.getWell("PROD01", 0);
const auto& ws = wstate.well("PROD01");
auto segments = ws.segments;
BOOST_CHECK_EQUAL(segments.pressure.size(), well.getSegments().size());
segments.pressure_drop_friction[0] = 1;
segments.pressure_drop_accel[0] = 2;
segments.pressure_drop_hydrostatic[0] = 4;
BOOST_CHECK_EQUAL(segments.pressure_drop(0), 7);
for (std::size_t i=0; i < segments.pressure.size(); i++)
segments.pressure[i] = (i + 1);
const double bhp = 2.0;
segments.scale_pressure(bhp);
for (std::size_t i=0; i < segments.pressure.size(); i++)
BOOST_CHECK_EQUAL(segments.pressure[i], 1.+(i+1));
BOOST_CHECK_EQUAL( segments.size(), well.getSegments().size() );
}
BOOST_AUTO_TEST_CASE(TESTPerfData) {
Opm::PerfData pd1(3, 100.0, true, 3);
Opm::PerfData pd2(3, 100.0, true, 3);
Opm::PerfData pd3(2, 100.0, true, 3);
Opm::PerfData pd4(3, 100.0, false, 3);
for (std::size_t i = 0; i < 3; i++) {
pd1.pressure[i] = i+1;
pd2.pressure[i] = 10*(i+1);
}
BOOST_CHECK(pd1.try_assign(pd2));
for (std::size_t i = 0; i < 3; i++) {
BOOST_CHECK(pd2.pressure[i] == 10*(i+1));
BOOST_CHECK(pd1.pressure[i] == 10*(i+1));
}
BOOST_CHECK(!pd1.try_assign(pd3));
for (std::size_t i = 0; i < 3; i++) {
BOOST_CHECK(pd1.pressure[i] == 10*(i+1));
}
BOOST_CHECK(!pd1.try_assign(pd4));
}
BOOST_AUTO_TEST_CASE(TestSingleWellState) {
Opm::ParallelWellInfo pinfo;
std::vector> connections = {{0,1,1,0,0},{1,1,1,0,1},{2,1,1,0,2}};
Opm::PhaseUsage pu;
// This is totally bonkers, but the pu needs a complete deck to initialize properly
pu.num_phases = 3;
Opm::SingleWellState ws1("W1", pinfo, true, 100.0, connections, pu, 1.0);
Opm::SingleWellState ws2("W2", pinfo, true, 100.0, connections, pu, 2.0);
Opm::SingleWellState ws3("W3", pinfo, false, 100.0, connections, pu, 3.0);
ws1.bhp = 100;
ws1.thp = 200;
ws2.init_timestep(ws1);
BOOST_CHECK_EQUAL(ws2.bhp, ws1.bhp);
BOOST_CHECK_EQUAL(ws2.thp, ws1.thp);
ws3.bhp = ws1.bhp * 2;
ws3.thp = ws1.thp * 2;
ws3.init_timestep(ws1);
BOOST_CHECK(ws3.bhp != ws1.bhp);
BOOST_CHECK(ws3.thp != ws1.thp);
}
BOOST_AUTO_TEST_CASE(TestPU) {
Opm::PhaseUsage pu({Opm::BlackoilPhases::Polymer, Opm::BlackoilPhases::Solvent, Opm::BlackoilPhases::Aqua, Opm::BlackoilPhases::ZFraction});
BOOST_CHECK(pu.phase_used[Opm::BlackoilPhases::Aqua]); BOOST_CHECK_EQUAL(pu.phase_pos[Opm::BlackoilPhases::Aqua], 0);
BOOST_CHECK(pu.phase_used[Opm::BlackoilPhases::Solvent]); BOOST_CHECK_EQUAL(pu.phase_pos[Opm::BlackoilPhases::Solvent], 1);
BOOST_CHECK(pu.phase_used[Opm::BlackoilPhases::Polymer]); BOOST_CHECK_EQUAL(pu.phase_pos[Opm::BlackoilPhases::Polymer], 2);
BOOST_CHECK(pu.phase_used[Opm::BlackoilPhases::ZFraction]); BOOST_CHECK_EQUAL(pu.phase_pos[Opm::BlackoilPhases::ZFraction], 3);
BOOST_CHECK(!pu.phase_used[Opm::BlackoilPhases::Liquid]); BOOST_CHECK_EQUAL(pu.phase_pos[Opm::BlackoilPhases::Liquid], -1);
BOOST_CHECK(!pu.phase_used[Opm::BlackoilPhases::Energy]); BOOST_CHECK_EQUAL(pu.phase_pos[Opm::BlackoilPhases::Energy], -1);
BOOST_CHECK_EQUAL(pu.num_phases, 1); // Only Aqua counts as a phase.
BOOST_CHECK(pu.has_polymer);
BOOST_CHECK(pu.has_solvent);
BOOST_CHECK(pu.has_zFraction);
BOOST_CHECK(!pu.has_energy);
BOOST_CHECK(!pu.has_polymermw);
BOOST_CHECK(!pu.has_foam);
BOOST_CHECK(!pu.has_brine);
}
BOOST_AUTO_TEST_SUITE_END()