/* Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 Statoil AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_PARALLELOVERLAPPINGILU0_HEADER_INCLUDED #define OPM_PARALLELOVERLAPPINGILU0_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { //template //class ParallelOverlappingILU0; template class ParallelOverlappingILU0; enum class MILU_VARIANT{ /// \brief Do not perform modified ILU ILU = 0, /// \brief \f$U_{ii} = U_{ii} +\f$ sum(dropped entries) MILU_1 = 1, /// \brief \f$U_{ii} = U_{ii} + sign(U_{ii}) * \f$ sum(dropped entries) MILU_2 = 2, /// \brief \f$U_{ii} = U_{ii} sign(U_{ii}) * \f$ sum(|dropped entries|) MILU_3 = 3, /// \brief \f$U_{ii} = U_{ii} + (U_{ii}>0?1:0) * \f$ sum(dropped entries) MILU_4 = 4 }; inline MILU_VARIANT convertString2Milu(std::string milu) { if( 0 == milu.compare("MILU_1") ) { return MILU_VARIANT::MILU_1; } if ( 0 == milu.compare("MILU_2") ) { return MILU_VARIANT::MILU_2; } if ( 0 == milu.compare("MILU_3") ) { return MILU_VARIANT::MILU_3; } return MILU_VARIANT::ILU; } template class ParallelOverlappingILU0Args : public Dune::Amg::DefaultSmootherArgs { public: ParallelOverlappingILU0Args(MILU_VARIANT milu = MILU_VARIANT::ILU ) : milu_(milu) {} void setMilu(MILU_VARIANT milu) { milu_ = milu; } MILU_VARIANT getMilu() const { return milu_; } void setN(int n) { n_ = n; } int getN() const { return n_; } private: MILU_VARIANT milu_; int n_; }; } // end namespace Opm namespace Dune { namespace Amg { template struct SmootherTraits > { using Arguments = Opm::ParallelOverlappingILU0Args; }; /// \brief Tells AMG how to construct the Opm::ParallelOverlappingILU0 smoother /// \tparam Matrix The type of the Matrix. /// \tparam Domain The type of the Vector representing the domain. /// \tparam Range The type of the Vector representing the range. /// \tparam ParallelInfo The type of the parallel information object /// used, e.g. Dune::OwnerOverlapCommunication template struct ConstructionTraits > { typedef Opm::ParallelOverlappingILU0 T; typedef DefaultParallelConstructionArgs Arguments; #if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7) typedef std::shared_ptr< T > ParallelOverlappingILU0Pointer; #else typedef T* ParallelOverlappingILU0Pointer; #endif static inline ParallelOverlappingILU0Pointer construct(Arguments& args) { return ParallelOverlappingILU0Pointer( new T(args.getMatrix(), args.getComm(), args.getArgs().getN(), args.getArgs().relaxationFactor, args.getArgs().getMilu()) ); } #if ! DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7) // this method is not needed anymore in 2.7 since std::shared_ptr is used static inline void deconstruct(T* bp) { delete bp; } #endif }; } // end namespace Amg } // end namespace Dune namespace Opm { namespace detail { struct Reorderer { virtual std::size_t operator[](std::size_t i) const = 0; virtual ~Reorderer() {} }; struct NoReorderer : public Reorderer { virtual std::size_t operator[](std::size_t i) const { return i; } }; struct RealReorderer : public Reorderer { RealReorderer(const std::vector& ordering) : ordering_(&ordering) {} virtual std::size_t operator[](std::size_t i) const { return (*ordering_)[i]; } const std::vector* ordering_; }; struct IdentityFunctor { template T operator()(const T& t) { return t; } }; struct OneFunctor { template T operator()(const T&) { return 1.0; } }; struct SignFunctor { template double operator()(const T& t) { if ( t < 0.0 ) { return -1; } else { return 1.0; } } }; struct IsPositiveFunctor { template double operator()(const T& t) { if ( t < 0.0 ) { return 0; } else { return 1; } } }; struct AbsFunctor { template T operator()(const T& t) { using std::abs; return abs(t); } }; template void milu0_decomposition(M& A, F1 absFunctor = F1(), F2 signFunctor = F2(), std::vector* diagonal = nullptr) { if( diagonal ) { diagonal->reserve(A.N()); } for ( auto irow = A.begin(), iend = A.end(); irow != iend; ++irow) { auto a_i_end = irow->end(); auto a_ik = irow->begin(); std::array sum_dropped{}; // Eliminate entries in lower triangular matrix // and store factors for L for ( ; a_ik.index() < irow.index(); ++a_ik ) { auto k = a_ik.index(); auto a_kk = A[k].find(k); // L_ik = A_kk^-1 * A_ik a_ik->rightmultiply(*a_kk); // modify the rest of the row, everything right of a_ik // a_i* -=a_ik * a_k* auto a_k_end = A[k].end(); auto a_kj = a_kk, a_ij = a_ik; ++a_kj; ++a_ij; while ( a_kj != a_k_end) { auto modifier = *a_kj; modifier.leftmultiply(*a_ik); while( a_ij != a_i_end && a_ij.index() < a_kj.index()) { ++a_ij; } if ( a_ij != a_i_end && a_ij.index() == a_kj.index() ) { // Value is not dropped *a_ij -= modifier; ++a_ij; ++a_kj; } else { auto entry = sum_dropped.begin(); for( const auto& row: modifier ) { for( const auto& colEntry: row ) { *entry += absFunctor(-colEntry); } ++entry; } ++a_kj; } } } if ( a_ik.index() != irow.index() ) OPM_THROW(std::logic_error, "Matrix is missing diagonal for row " << irow.index()); int index = 0; for(const auto& entry: sum_dropped) { auto& bdiag = (*a_ik)[index][index]; bdiag += signFunctor(bdiag) * entry; ++index; } if ( diagonal ) { diagonal->push_back(*a_ik); } a_ik->invert(); // compute inverse of diagonal block } } template void milu0_decomposition(M& A, std::vector* diagonal) { milu0_decomposition(A, detail::IdentityFunctor(), detail::OneFunctor(), diagonal); } template void milun_decomposition(const M& A, int n, MILU_VARIANT milu, M& ILU, Reorderer& ordering, Reorderer& inverseOrdering) { using Map = std::map; auto iluRow = ILU.createbegin(); for(std::size_t i = 0, iend = A.N(); i < iend; ++i) { auto& orow = A[inverseOrdering[i]]; Map rowPattern; for ( auto col = orow.begin(), cend = orow.end(); col != cend; ++col) { rowPattern[ordering[col.index()]] = 0; } for(auto ik = rowPattern.begin(); ik->first < i; ++ik) { if ( ik->second < n ) { auto& rowk = ILU[ik->first]; for ( auto kj = rowk.find(ik->first), endk = rowk.end(); kj != endk; ++kj) { // Assume double and block_type FieldMatrix // first element is misused to store generation number int generation = (*kj)[0][0]; if(generation < n) { auto ij = rowPattern.find(kj.index()); if ( ij == rowPattern.end() ) { rowPattern[ordering[kj.index()]] = generation + 1; } } } } } // create the row for(const auto entry: rowPattern) { iluRow.insert(entry.first); } ++iluRow; // write generation to newly created row. auto generationPair = rowPattern.begin(); for ( auto col = ILU[i].begin(), cend = ILU[i].end(); col != cend; ++col, ++generationPair) { assert(col.index() == generationPair->first); (*col)[0][0] = generationPair->second; } } // copy Entries from A for(auto iter=A.begin(), iend = A.end(); iter != iend; ++iter) { auto& newRow = ILU[ordering[iter.index()]]; // reset stored generation for ( auto& col: newRow) { col = 0; } // copy row. for(auto col = iter->begin(), cend = iter->end(); col != cend; ++col) { newRow[ordering[col.index()]] = *col; } } // call decomposition on pattern switch ( milu ) { case MILU_VARIANT::MILU_1: detail::milu0_decomposition ( ILU); break; case MILU_VARIANT::MILU_2: detail::milu0_decomposition ( ILU, detail::IdentityFunctor(), detail::SignFunctor() ); break; case MILU_VARIANT::MILU_3: detail::milu0_decomposition ( ILU, detail::AbsFunctor(), detail::SignFunctor() ); break; case MILU_VARIANT::MILU_4: detail::milu0_decomposition ( ILU, detail::IdentityFunctor(), detail::IsPositiveFunctor() ); break; default: bilu0_decomposition( ILU ); break; } } //! compute ILU decomposition of A. A is overwritten by its decomposition template void convertToCRS(const M& A, CRS& lower, CRS& upper, InvVector& inv ) { // No need to do anything for 0 rows. Return to prevent indexing a // a zero sized array. if ( A.N() == 0 ) { return; } typedef typename M :: size_type size_type; lower.resize( A.N() ); upper.resize( A.N() ); inv.resize( A.N() ); // Count the lower and upper matrix entries. size_type numLower = 0; size_type numUpper = 0; const auto endi = A.end(); for (auto i = A.begin(); i != endi; ++i) { const size_type iIndex = i.index(); size_type numLowerRow = 0; for (auto j = (*i).begin(); j.index() < iIndex; ++j) { ++numLowerRow; } numLower += numLowerRow; numUpper += (*i).size() - numLowerRow - 1; } assert(numLower + numUpper + A.N() == A.nonzeroes()); lower.reserveAdditional( numLower ); // implement left looking variant with stored inverse size_type row = 0; size_type colcount = 0; lower.rows_[ 0 ] = colcount; for (auto i=A.begin(); i!=endi; ++i, ++row) { const size_type iIndex = i.index(); // eliminate entries left of diagonal; store L factor for (auto j=(*i).begin(); j.index() < iIndex; ++j ) { lower.push_back( (*j), j.index() ); ++colcount; } lower.rows_[ iIndex+1 ] = colcount; } assert(colcount == numLower); const auto rendi = A.beforeBegin(); row = 0; colcount = 0; upper.rows_[ 0 ] = colcount ; upper.reserveAdditional( numUpper ); // NOTE: upper and inv store entries in reverse order, reverse here // relative to ILU for (auto i=A.beforeEnd(); i!=rendi; --i, ++ row ) { const size_type iIndex = i.index(); // store in reverse row order // eliminate entries left of diagonal; store L factor for (auto j=(*i).beforeEnd(); j.index()>=iIndex; --j ) { const size_type jIndex = j.index(); if( j.index() == iIndex ) { inv[ row ] = (*j); break; } else if ( j.index() >= i.index() ) { upper.push_back( (*j), jIndex ); ++colcount ; } } upper.rows_[ row+1 ] = colcount; } assert(colcount == numUpper); } } // end namespace detail /// \brief A two-step version of an overlapping Schwarz preconditioner using one step ILU0 as /// /// This preconditioner differs from a ParallelRestrictedOverlappingSchwarz with /// Dune:SeqILU0 in the follwing way: /// During apply we make sure that the current residual is consistent (i.e. /// each process knows the same value for each index. The we solve /// Ly= d for y and make y consistent again. Last we solve Ux = y and /// make sure that x is consistent. /// In contrast for ParallelRestrictedOverlappingSchwarz we solve (LU)x = d for x /// without forcing consistency between the two steps. /// \tparam Matrix The type of the Matrix. /// \tparam Domain The type of the Vector representing the domain. /// \tparam Range The type of the Vector representing the range. /// \tparam ParallelInfo The type of the parallel information object /// used, e.g. Dune::OwnerOverlapCommunication template class ParallelOverlappingILU0 : public Dune::Preconditioner { typedef ParallelInfoT ParallelInfo; public: //! \brief The matrix type the preconditioner is for. typedef typename std::remove_const::type matrix_type; //! \brief The domain type of the preconditioner. typedef Domain domain_type; //! \brief The range type of the preconditioner. typedef Range range_type; //! \brief The field type of the preconditioner. typedef typename Domain::field_type field_type; typedef typename matrix_type::block_type block_type; typedef typename matrix_type::size_type size_type; protected: struct CRS { CRS() : nRows_( 0 ) {} size_type rows() const { return nRows_; } size_type nonZeros() const { assert( rows_[ rows() ] != size_type(-1) ); return rows_[ rows() ]; } void resize( const size_type nRows ) { if( nRows_ != nRows ) { nRows_ = nRows ; rows_.resize( nRows_+1, size_type(-1) ); } } void reserveAdditional( const size_type nonZeros ) { const size_type needed = values_.size() + nonZeros ; if( values_.capacity() < needed ) { const size_type estimate = needed * 1.1; values_.reserve( estimate ); cols_.reserve( estimate ); } } void push_back( const block_type& value, const size_type index ) { values_.push_back( value ); cols_.push_back( index ); } std::vector< size_type > rows_; std::vector< block_type > values_; std::vector< size_type > cols_; size_type nRows_; }; public: Dune::SolverCategory::Category category() const override { return std::is_same::value ? Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping; } /*! \brief Constructor. Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param n ILU fill in level (for testing). This does not work in parallel. \param w The relaxation factor. \param milu The modified ILU variant to use. 0 means traditional ILU. \see MILU_VARIANT. \param redblack Whether to use a red-black ordering. \param reorder_sphere If true, we start the reordering at a root node. The vertices on each layer aound it (same distance) are ordered consecutivly. If false, we preserver the order of the vertices with the same color. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const int n, const field_type w, MILU_VARIANT milu, bool redblack=false, bool reorder_sphere=true) : lower_(), upper_(), inv_(), comm_(nullptr), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ) { // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. init( reinterpret_cast(A), n, milu, redblack, reorder_sphere ); } /*! \brief Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param comm communication object, e.g. Dune::OwnerOverlapCopyCommunication \param n ILU fill in level (for testing). This does not work in parallel. \param w The relaxation factor. \param milu The modified ILU variant to use. 0 means traditional ILU. \see MILU_VARIANT. \param redblack Whether to use a red-black ordering. \param reorder_sphere If true, we start the reordering at a root node. The vertices on each layer aound it (same distance) are ordered consecutivly. If false, we preserver the order of the vertices with the same color. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const ParallelInfo& comm, const int n, const field_type w, MILU_VARIANT milu, bool redblack=false, bool reorder_sphere=true) : lower_(), upper_(), inv_(), comm_(&comm), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ) { // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. init( reinterpret_cast(A), n, milu, redblack, reorder_sphere ); } /*! \brief Constructor. Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param w The relaxation factor. \param milu The modified ILU variant to use. 0 means traditional ILU. \see MILU_VARIANT. \param redblack Whether to use a red-black ordering. \param reorder_sphere If true, we start the reordering at a root node. The vertices on each layer aound it (same distance) are ordered consecutivly. If false, we preserver the order of the vertices with the same color. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const field_type w, MILU_VARIANT milu, bool redblack=false, bool reorder_sphere=true) : ParallelOverlappingILU0( A, 0, w, milu, redblack, reorder_sphere ) { } /*! \brief Constructor. Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param comm communication object, e.g. Dune::OwnerOverlapCopyCommunication \param w The relaxation factor. \param milu The modified ILU variant to use. 0 means traditional ILU. \see MILU_VARIANT. \param redblack Whether to use a red-black ordering. \param reorder_sphere If true, we start the reordering at a root node. The vertices on each layer aound it (same distance) are ordered consecutivly. If false, we preserver the order of the vertices with the same color. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const ParallelInfo& comm, const field_type w, MILU_VARIANT milu, bool redblack=false, bool reorder_sphere=true) : lower_(), upper_(), inv_(), comm_(&comm), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ) { // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. init( reinterpret_cast(A), 0, milu, redblack, reorder_sphere ); } /*! \brief Prepare the preconditioner. \copydoc Preconditioner::pre(X&,Y&) */ virtual void pre (Domain& x, Range& b) override { DUNE_UNUSED_PARAMETER(x); DUNE_UNUSED_PARAMETER(b); } /*! \brief Apply the preconditoner. \copydoc Preconditioner::apply(X&,const Y&) */ virtual void apply (Domain& v, const Range& d) override { Range& md = reorderD(d); Domain& mv = reorderV(v); // iterator types typedef typename Range ::block_type dblock; typedef typename Domain::block_type vblock; const size_type iEnd = lower_.rows(); const size_type lastRow = iEnd - 1; if( iEnd != upper_.rows() ) { OPM_THROW(std::logic_error,"ILU: number of lower and upper rows must be the same"); } // lower triangular solve for( size_type i=0; i void copyOwnerToAll( V& v ) const { if( comm_ ) { comm_->copyOwnerToAll(v, v); } } /*! \brief Clean up. \copydoc Preconditioner::post(X&) */ virtual void post (Range& x) override { DUNE_UNUSED_PARAMETER(x); } protected: void init( const Matrix& A, const int iluIteration, MILU_VARIANT milu, bool redBlack, bool reorderSpheres ) { // (For older DUNE versions the communicator might be // invalid if redistribution in AMG happened on the coarset level. // Therefore we check for nonzero size if ( comm_ && comm_->communicator().size()<=0 ) { if ( A.N() > 0 ) { OPM_THROW(std::logic_error, "Expected a matrix with zero rows for an invalid communicator."); } else { // simply set the communicator to null comm_ = nullptr; } } int ilu_setup_successful = 1; std::string message; const int rank = ( comm_ ) ? comm_->communicator().rank() : 0; std::unique_ptr< Matrix > ILU; if ( redBlack ) { using Graph = Dune::Amg::MatrixGraph; Graph graph(A); auto colorsTuple = colorVerticesWelshPowell(graph); const auto& colors = std::get<0>(colorsTuple); const auto& verticesPerColor = std::get<2>(colorsTuple); auto noColors = std::get<1>(colorsTuple); if ( reorderSpheres ) { ordering_ = reorderVerticesSpheres(colors, noColors, verticesPerColor, graph, 0); } else { ordering_ = reorderVerticesPreserving(colors, noColors, verticesPerColor, graph); } } std::vector inverseOrdering(ordering_.size()); std::size_t index = 0; for( auto newIndex: ordering_) { inverseOrdering[newIndex] = index++; } try { if( iluIteration == 0 ) { // create ILU-0 decomposition if ( ordering_.empty() ) { ILU.reset( new Matrix( A ) ); } else { ILU.reset( new Matrix(A.N(), A.M(), A.nonzeroes(), Matrix::row_wise)); auto& newA = *ILU; // Create sparsity pattern for(auto iter=newA.createbegin(), iend = newA.createend(); iter != iend; ++iter) { const auto& row = A[inverseOrdering[iter.index()]]; for(auto col = row.begin(), cend = row.end(); col != cend; ++col) { iter.insert(ordering_[col.index()]); } } // Copy values for(auto iter = A.begin(), iend = A.end(); iter != iend; ++iter) { auto& newRow = newA[ordering_[iter.index()]]; for(auto col = iter->begin(), cend = iter->end(); col != cend; ++col) { newRow[ordering_[col.index()]] = *col; } } } switch ( milu ) { case MILU_VARIANT::MILU_1: detail::milu0_decomposition ( *ILU); break; case MILU_VARIANT::MILU_2: detail::milu0_decomposition ( *ILU, detail::IdentityFunctor(), detail::SignFunctor() ); break; case MILU_VARIANT::MILU_3: detail::milu0_decomposition ( *ILU, detail::AbsFunctor(), detail::SignFunctor() ); break; case MILU_VARIANT::MILU_4: detail::milu0_decomposition ( *ILU, detail::IdentityFunctor(), detail::IsPositiveFunctor() ); break; default: bilu0_decomposition( *ILU ); break; } } else { // create ILU-n decomposition ILU.reset( new Matrix( A.N(), A.M(), Matrix::row_wise) ); std::unique_ptr reorderer, inverseReorderer; if ( ordering_.empty() ) { reorderer.reset(new detail::NoReorderer()); inverseReorderer.reset(new detail::NoReorderer()); } else { reorderer.reset(new detail::RealReorderer(ordering_)); inverseReorderer.reset(new detail::RealReorderer(inverseOrdering)); } milun_decomposition( A, iluIteration, milu, *ILU, *reorderer, *inverseReorderer ); } } catch (const Dune::MatrixBlockError& error) { message = error.what(); std::cerr<<"Exception occured on process " << rank << " during " << "setup of ILU0 preconditioner with message: " << message<communicator().min(ilu_setup_successful) == 0; const bool local_failure = ilu_setup_successful == 0; if ( local_failure || parallel_failure ) { throw Dune::MatrixBlockError(); } // store ILU in simple CRS format detail::convertToCRS( *ILU, lower_, upper_, inv_ ); } /// \brief Reorder D if needed and return a reference to it. Range& reorderD(const Range& d) { if ( ordering_.empty()) { // As d is non-const in the apply method of the // solver casting away constness in this particular // setting is not undefined. It is ugly though but due // to the preconditioner interface of dune-istl. return const_cast(d); } else { reorderedD_.resize(d.size()); std::size_t i = 0; for(auto index: ordering_) { reorderedD_[index]=d[i++]; } return reorderedD_; } } /// \brief Reorder V if needed and return a reference to it. Domain& reorderV(Domain& v) { if ( ordering_.empty()) { return v; } else { reorderedV_.resize(v.size()); std::size_t i = 0; for(auto index: ordering_) { reorderedV_[index]=v[i++]; } return reorderedV_; } } void reorderBack(const Range& reorderedV, Range& v) { if ( !ordering_.empty() ) { std::size_t i = 0; for(auto index: ordering_) { v[i++] = reorderedV[index]; } } } protected: //! \brief The ILU0 decomposition of the matrix. CRS lower_; CRS upper_; std::vector< block_type > inv_; //! \brief the reordering of the unknowns std::vector< std::size_t > ordering_; //! \brief The reordered right hand side Range reorderedD_; //! \brief The reordered left hand side. Domain reorderedV_; const ParallelInfo* comm_; //! \brief The relaxation factor to use. const field_type w_; const bool relaxation_; }; } // end namespace Opm #endif