/* Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 Statoil AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_PARALLELOVERLAPPINGILU0_HEADER_INCLUDED #define OPM_PARALLELOVERLAPPINGILU0_HEADER_INCLUDED #include #include #include #include namespace Opm { //template //class ParallelOverlappingILU0; template class ParallelOverlappingILU0; } // end namespace Opm namespace Dune { namespace Amg { /// \brief Tells AMG how to construct the Opm::ParallelOverlappingILU0 smoother /// \tparam Matrix The type of the Matrix. /// \tparam Domain The type of the Vector representing the domain. /// \tparam Range The type of the Vector representing the range. /// \tparam ParallelInfo The type of the parallel information object /// used, e.g. Dune::OwnerOverlapCommunication template struct ConstructionTraits > { typedef Dune::SeqILU0 T; typedef DefaultParallelConstructionArgs Arguments; typedef ConstructionTraits SeqConstructionTraits; static inline Opm::ParallelOverlappingILU0* construct(Arguments& args) { return new Opm::ParallelOverlappingILU0(args.getMatrix(), args.getComm(), args.getArgs().relaxationFactor); } static inline void deconstruct(Opm::ParallelOverlappingILU0* bp) { delete bp; } }; } // end namespace Amg } // end namespace Dune namespace Opm { namespace detail { //! compute ILU decomposition of A. A is overwritten by its decomposition template void convertToCRS(const M& A, CRS& lower, CRS& upper, InvVector& inv ) { typedef typename M :: size_type size_type; lower.resize( A.N() ); upper.resize( A.N() ); inv.resize( A.N() ); lower.reserveAdditional( 2*A.N() ); // implement left looking variant with stored inverse const auto endi = A.end(); size_type row = 0; size_type colcount = 0; lower.rows_[ 0 ] = colcount; for (auto i=A.begin(); i!=endi; ++i, ++row) { const size_type iIndex = i.index(); lower.reserveAdditional( (*i).size() ); // eliminate entries left of diagonal; store L factor for (auto j=(*i).begin(); j.index() < iIndex; ++j ) { lower.push_back( (*j), j.index() ); ++colcount; } lower.rows_[ iIndex+1 ] = colcount; } const auto rendi = A.beforeBegin(); row = 0; colcount = 0; upper.rows_[ 0 ] = colcount ; upper.reserveAdditional( lower.nonZeros() + A.N() ); // NOTE: upper and inv store entries in reverse order, reverse here // relative to ILU for (auto i=A.beforeEnd(); i!=rendi; --i, ++ row ) { const size_type iIndex = i.index(); upper.reserveAdditional( (*i).size() ); // store in reverse row order // eliminate entries left of diagonal; store L factor for (auto j=(*i).beforeEnd(); j.index()>=iIndex; --j ) { const size_type jIndex = j.index(); if( j.index() == iIndex ) { inv[ row ] = (*j); break; } else if ( j.index() >= i.index() ) { upper.push_back( (*j), jIndex ); ++colcount ; } } upper.rows_[ row+1 ] = colcount; } } } // end namespace detail /// \brief A two-step version of an overlapping Schwarz preconditioner using one step ILU0 as /// /// This preconditioner differs from a ParallelRestrictedOverlappingSchwarz with /// Dune:SeqILU0 in the follwing way: /// During apply we make sure that the current residual is consistent (i.e. /// each process knows the same value for each index. The we solve /// Ly= d for y and make y consistent again. Last we solve Ux = y and /// make sure that x is consistent. /// In contrast for ParallelRestrictedOverlappingSchwarz we solve (LU)x = d for x /// without forcing consistency between the two steps. /// \tparam Matrix The type of the Matrix. /// \tparam Domain The type of the Vector representing the domain. /// \tparam Range The type of the Vector representing the range. /// \tparam ParallelInfo The type of the parallel information object /// used, e.g. Dune::OwnerOverlapCommunication template class ParallelOverlappingILU0 : public Dune::Preconditioner { typedef ParallelInfoT ParallelInfo; public: //! \brief The matrix type the preconditioner is for. typedef typename std::remove_const::type matrix_type; //! \brief The domain type of the preconditioner. typedef Domain domain_type; //! \brief The range type of the preconditioner. typedef Range range_type; //! \brief The field type of the preconditioner. typedef typename Domain::field_type field_type; typedef typename matrix_type::block_type block_type; typedef typename matrix_type::size_type size_type; protected: struct CRS { CRS() : nRows_( 0 ) {} size_type rows() const { return nRows_; } size_type nonZeros() const { assert( rows_[ rows() ] != size_type(-1) ); return rows_[ rows() ]; } void resize( const size_type nRows ) { if( nRows_ != nRows ) { nRows_ = nRows ; rows_.resize( nRows_+1, size_type(-1) ); } } void reserveAdditional( const size_type nonZeros ) { const size_type needed = values_.size() + nonZeros ; if( values_.capacity() < needed ) { const size_type estimate = needed * 1.1; values_.reserve( estimate ); cols_.reserve( estimate ); } } void push_back( const block_type& value, const size_type index ) { values_.push_back( value ); cols_.push_back( index ); } std::vector< size_type > rows_; std::vector< block_type > values_; std::vector< size_type > cols_; size_type nRows_; }; public: // define the category enum { //! \brief The category the preconditioner is part of. category = std::is_same::value ? Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping }; /*! \brief Constructor. Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param n ILU fill in level (for testing). This does not work in parallel. \param w The relaxation factor. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const int n, const field_type w ) : lower_(), upper_(), inv_(), comm_(nullptr), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ) { // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. init( reinterpret_cast(A), n ); } /*! \brief Constructor. Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param w The relaxation factor. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const field_type w) : ParallelOverlappingILU0( A, 0, w ) { } /*! \brief Constructor. Constructor gets all parameters to operate the prec. \param A The matrix to operate on. \param comm communication object, e.g. Dune::OwnerOverlapCopyCommunication \param w The relaxation factor. */ template ParallelOverlappingILU0 (const Dune::BCRSMatrix& A, const ParallelInfo& comm, const field_type w) : lower_(), upper_(), inv_(), comm_(&comm), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ) { // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. init( reinterpret_cast(A), 0 ); } /*! \brief Prepare the preconditioner. \copydoc Preconditioner::pre(X&,Y&) */ virtual void pre (Domain& x, Range& b) { DUNE_UNUSED_PARAMETER(x); DUNE_UNUSED_PARAMETER(b); } /*! \brief Apply the preconditoner. \copydoc Preconditioner::apply(X&,const Y&) */ virtual void apply (Domain& v, const Range& d) { Range& md = const_cast(d); copyOwnerToAll( md ); // iterator types typedef typename Range ::block_type dblock; typedef typename Domain::block_type vblock; const size_type iEnd = lower_.rows(); const size_type lastRow = iEnd - 1; if( iEnd != upper_.rows() ) { std::abort(); // OPM_THROW(std::logic_error,"ILU: lower and upper rows must be the same"); } // lower triangular solve for( size_type i=0; i void copyOwnerToAll( V& v ) const { if( comm_ ) { comm_->copyOwnerToAll(v, v); } } /*! \brief Clean up. \copydoc Preconditioner::post(X&) */ virtual void post (Range& x) { DUNE_UNUSED_PARAMETER(x); } protected: void init( const Matrix& A, const int iluIteration ) { int ilu_setup_successful = 1; std::string message; const int rank = ( comm_ ) ? comm_->communicator().rank() : 0; std::unique_ptr< Matrix > ILU; try { if( iluIteration == 0 ) { // create ILU-0 decomposition ILU.reset( new Matrix( A ) ); bilu0_decomposition( *ILU ); } else { // create ILU-n decomposition ILU.reset( new Matrix( A.N(), A.M(), Matrix::row_wise) ); bilu_decomposition( A, iluIteration, *ILU ); } } catch ( Dune::MatrixBlockError error ) { message = error.what(); std::cerr<<"Exception occured on process " << rank << " during " << "setup of ILU0 preconditioner with message: " << message<communicator().min(ilu_setup_successful) == 0 ) { throw Dune::MatrixBlockError(); } // store ILU in simple CRS format detail::convertToCRS( *ILU, lower_, upper_, inv_ ); } protected: //! \brief The ILU0 decomposition of the matrix. CRS lower_; CRS upper_; std::vector< block_type > inv_; const ParallelInfo* comm_; //! \brief The relaxation factor to use. const field_type w_; const bool relaxation_; }; } // end namespace Opm #endif