/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_NON_LINEAR_SOLVER_EBOS_HPP
#define OPM_NON_LINEAR_SOLVER_EBOS_HPP
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
BEGIN_PROPERTIES
NEW_TYPE_TAG(FlowNonLinearSolver);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(NewtonMaxRelax);
NEW_PROP_TAG(FlowNewtonMaxIterations);
NEW_PROP_TAG(FlowNewtonMinIterations);
NEW_PROP_TAG(NewtonRelaxationType);
SET_SCALAR_PROP(FlowNonLinearSolver, NewtonMaxRelax, 0.5);
SET_INT_PROP(FlowNonLinearSolver, FlowNewtonMaxIterations, 20);
SET_INT_PROP(FlowNonLinearSolver, FlowNewtonMinIterations, 1);
SET_STRING_PROP(FlowNonLinearSolver, NewtonRelaxationType, "dampen");
END_PROPERTIES
namespace Opm {
/// A nonlinear solver class suitable for general fully-implicit models,
/// as well as pressure, transport and sequential models.
template
class NonlinearSolverEbos
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
// Available relaxation scheme types.
enum RelaxType {
Dampen,
SOR
};
// Solver parameters controlling nonlinear process.
struct SolverParameters
{
RelaxType relaxType_;
double relaxMax_;
double relaxIncrement_;
double relaxRelTol_;
int maxIter_; // max nonlinear iterations
int minIter_; // min nonlinear iterations
SolverParameters()
{
// set default values
reset();
// overload with given parameters
relaxMax_ = EWOMS_GET_PARAM(TypeTag, Scalar, NewtonMaxRelax);
maxIter_ = EWOMS_GET_PARAM(TypeTag, int, FlowNewtonMaxIterations);
minIter_ = EWOMS_GET_PARAM(TypeTag, int, FlowNewtonMinIterations);
const auto& relaxationTypeString = EWOMS_GET_PARAM(TypeTag, std::string, NewtonRelaxationType);
if (relaxationTypeString == "dampen") {
relaxType_ = Dampen;
} else if (relaxationTypeString == "sor") {
relaxType_ = SOR;
} else {
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxationTypeString);
}
}
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, Scalar, NewtonMaxRelax, "The maximum relaxation factor of a Newton iteration used by flow");
EWOMS_REGISTER_PARAM(TypeTag, int, FlowNewtonMaxIterations, "The maximum number of Newton iterations per time step used by flow");
EWOMS_REGISTER_PARAM(TypeTag, int, FlowNewtonMinIterations, "The minimum number of Newton iterations per time step used by flow");
EWOMS_REGISTER_PARAM(TypeTag, std::string, NewtonRelaxationType, "The type of relaxation used by flow's Newton method");
}
void reset()
{
// default values for the solver parameters
relaxType_ = Dampen;
relaxMax_ = 0.5;
relaxIncrement_ = 0.1;
relaxRelTol_ = 0.2;
maxIter_ = 10;
minIter_ = 1;
}
};
// Forwarding types from PhysicalModel.
typedef typename PhysicalModel::WellState WellState;
// --------- Public methods ---------
/// Construct solver for a given model.
///
/// The model is a std::unique_ptr because the object to which model points to is
/// not allowed to be deleted as long as the NonlinearSolver object exists.
///
/// \param[in] param parameters controlling nonlinear process
/// \param[in, out] model physical simulation model.
NonlinearSolverEbos(const SolverParameters& param,
std::unique_ptr model)
: param_(param)
, model_(std::move(model))
, linearizations_(0)
, nonlinearIterations_(0)
, linearIterations_(0)
, wellIterations_(0)
, nonlinearIterationsLast_(0)
, linearIterationsLast_(0)
, wellIterationsLast_(0)
{
if (!model_) {
OPM_THROW(std::logic_error, "Must provide a non-null model argument for NonlinearSolver.");
}
}
SimulatorReport step(const SimulatorTimerInterface& timer)
{
SimulatorReport iterReport;
SimulatorReport report;
failureReport_ = SimulatorReport();
// Do model-specific once-per-step calculations.
model_->prepareStep(timer);
int iteration = 0;
// Let the model do one nonlinear iteration.
// Set up for main solver loop.
bool converged = false;
// ---------- Main nonlinear solver loop ----------
do {
try {
// Do the nonlinear step. If we are in a converged state, the
// model will usually do an early return without an expensive
// solve, unless the minIter() count has not been reached yet.
iterReport = model_->nonlinearIteration(iteration, timer, *this);
report += iterReport;
report.converged = iterReport.converged;
converged = report.converged;
iteration += 1;
}
catch (...) {
// if an iteration fails during a time step, all previous iterations
// count as a failure as well
failureReport_ += report;
failureReport_ += model_->failureReport();
throw;
}
}
while ( (!converged && (iteration <= maxIter())) || (iteration <= minIter()));
if (!converged) {
failureReport_ += report;
std::string msg = "Solver convergence failure - Failed to complete a time step within " + std::to_string(maxIter()) + " iterations.";
OPM_THROW_NOLOG(Opm::TooManyIterations, msg);
}
// Do model-specific post-step actions.
model_->afterStep(timer);
report.converged = true;
return report;
}
/// return the statistics if the step() method failed
const SimulatorReport& failureReport() const
{ return failureReport_; }
/// Number of linearizations used in all calls to step().
int linearizations() const
{ return linearizations_; }
/// Number of full nonlinear solver iterations used in all calls to step().
int nonlinearIterations() const
{ return nonlinearIterations_; }
/// Number of linear solver iterations used in all calls to step().
int linearIterations() const
{ return linearIterations_; }
/// Number of well iterations used in all calls to step().
int wellIterations() const
{ return wellIterations_; }
/// Number of nonlinear solver iterations used in the last call to step().
int nonlinearIterationsLastStep() const
{ return nonlinearIterationsLast_; }
/// Number of linear solver iterations used in the last call to step().
int linearIterationsLastStep() const
{ return linearIterationsLast_; }
/// Number of well iterations used in all calls to step().
int wellIterationsLastStep() const
{ return wellIterationsLast_; }
std::vector >
computeFluidInPlace(const std::vector& fipnum) const
{ return model_->computeFluidInPlace(fipnum); }
/// Reference to physical model.
const PhysicalModel& model() const
{ return *model_; }
/// Mutable reference to physical model.
PhysicalModel& model()
{ return *model_; }
/// Detect oscillation or stagnation in a given residual history.
void detectOscillations(const std::vector>& residualHistory,
const int it, bool& oscillate, bool& stagnate) const
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
// Only the saturations are used for oscillation detection for the black oil model.
// Stagnate is not used for any treatment here.
if ( it < 2 ) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
int oscillatePhase = 0;
const std::vector& F0 = residualHistory[it];
const std::vector& F1 = residualHistory[it - 1];
const std::vector& F2 = residualHistory[it - 2];
for (int p= 0; p < model_->numPhases(); ++p){
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
oscillatePhase += (d1 < relaxRelTol()) && (relaxRelTol() < d2);
// Process is 'stagnate' unless at least one phase
// exhibits significant residual change.
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
}
oscillate = (oscillatePhase > 1);
}
/// Apply a stabilization to dx, depending on dxOld and relaxation parameters.
/// Implemention for Dune block vectors.
template
void stabilizeNonlinearUpdate(BVector& dx, BVector& dxOld, const double omega) const
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
BVector tempDxOld = dxOld;
dxOld = dx;
switch (relaxType()) {
case Dampen: {
if (omega == 1.) {
return;
}
auto i = dx.size();
for (i = 0; i < dx.size(); ++i) {
dx[i] *= omega;
}
return;
}
case SOR: {
if (omega == 1.) {
return;
}
auto i = dx.size();
for (i = 0; i < dx.size(); ++i) {
dx[i] *= omega;
tempDxOld[i] *= (1.-omega);
dx[i] += tempDxOld[i];
}
return;
}
default:
OPM_THROW(std::runtime_error, "Can only handle Dampen and SOR relaxation type.");
}
return;
}
/// The greatest relaxation factor (i.e. smallest factor) allowed.
double relaxMax() const
{ return param_.relaxMax_; }
/// The step-change size for the relaxation factor.
double relaxIncrement() const
{ return param_.relaxIncrement_; }
/// The relaxation type (Dampen or SOR).
enum RelaxType relaxType() const
{ return param_.relaxType_; }
/// The relaxation relative tolerance.
double relaxRelTol() const
{ return param_.relaxRelTol_; }
/// The maximum number of nonlinear iterations allowed.
int maxIter() const
{ return param_.maxIter_; }
/// The minimum number of nonlinear iterations allowed.
int minIter() const
{ return param_.minIter_; }
/// Set parameters to override those given at construction time.
void setParameters(const SolverParameters& param)
{ param_ = param; }
private:
// --------- Data members ---------
SimulatorReport failureReport_;
SolverParameters param_;
std::unique_ptr model_;
int linearizations_;
int nonlinearIterations_;
int linearIterations_;
int wellIterations_;
int nonlinearIterationsLast_;
int linearIterationsLast_;
int wellIterationsLast_;
};
} // namespace Opm
#endif // OPM_NON_LINEAR_SOLVER_EBOS_HPP