// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FractureProblem
*/
#ifndef EWOMS_FRACTURE_PROBLEM_HH
#define EWOMS_FRACTURE_PROBLEM_HH
#if HAVE_DUNE_ALUGRID
// avoid reordering of macro elements, otherwise this problem won't work
#define DISABLE_ALUGRID_SFC_ORDERING 1
#include
#include
#else
#error "dune-alugrid not found!"
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class FractureProblem;
}
namespace Opm::Properties {
// Create a type tag for the problem
// Create new type tags
namespace TTag {
struct FractureProblem { using InheritsFrom = std::tuple; };
} // end namespace TTag
// Set the grid type
template
struct Grid
{ using type = Dune::ALUGrid*dim=*/2, /*dimWorld=*/2, Dune::simplex, Dune::nonconforming>; };
// Set the Vanguard property
template
struct Vanguard { using type = Opm::DgfVanguard; };
// Set the problem property
template
struct Problem { using type = Opm::FractureProblem; };
// Set the wetting phase
template
struct WettingPhase
{
private:
using Scalar = GetPropType;
public:
using type = Opm::LiquidPhase >;
};
// Set the non-wetting phase
template
struct NonwettingPhase
{
private:
using Scalar = GetPropType;
public:
using type = Opm::LiquidPhase >;
};
// Set the material Law
template
struct MaterialLaw
{
private:
using FluidSystem = GetPropType;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
using Scalar = GetPropType;
using Traits = Opm::TwoPhaseMaterialTraits;
// define the material law which is parameterized by effective
// saturations
using EffectiveLaw = Opm::RegularizedBrooksCorey;
// using EffectiveLaw = RegularizedVanGenuchten;
// using EffectiveLaw = LinearMaterial;
public:
using type = Opm::EffToAbsLaw;
};
// Enable the energy equation
template
struct EnableEnergy { static constexpr bool value = true; };
// Set the thermal conduction law
template
struct ThermalConductionLaw
{
private:
using Scalar = GetPropType;
using FluidSystem = GetPropType;
public:
// define the material law parameterized by absolute saturations
using type = Opm::SomertonThermalConductionLaw;
};
// set the energy storage law for the solid phase
template
struct SolidEnergyLaw
{ using type = Opm::ConstantSolidHeatCapLaw>; };
// Disable gravity
template
struct EnableGravity { static constexpr bool value = false; };
// For this problem, we use constraints to specify the left boundary
template
struct EnableConstraints { static constexpr bool value = true; };
// Set the default value for the file name of the grid
template
struct GridFile { static constexpr auto value = "data/fracture.art.dgf"; };
// Set the default value for the end time
template
struct EndTime
{
using type = GetPropType;
static constexpr type value = 3e3;
};
// Set the default value for the initial time step size
template
struct InitialTimeStepSize
{
using type = GetPropType;
static constexpr type value = 100;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Two-phase problem which involves fractures
*
* The domain is initially completely saturated by the oil phase,
* except for the left side, which is fully water saturated. Since the
* capillary pressure in the fractures is lower than in the rock
* matrix and the material is hydrophilic, water infiltrates through
* the fractures and gradually pushes the oil out on the right side,
* where the pressure is kept constant.
*/
template
class FractureProblem : public GetPropType
{
using ParentType = GetPropType;
using GridView = GetPropType;
using FluidSystem = GetPropType;
using WettingPhase = GetPropType;
using NonwettingPhase = GetPropType;
using Constraints = GetPropType;
using EqVector = GetPropType;
using PrimaryVariables = GetPropType;
using BoundaryRateVector = GetPropType;
using RateVector = GetPropType;
using Simulator = GetPropType;
using Scalar = GetPropType;
using MaterialLaw = GetPropType;
using MaterialLawParams = GetPropType;
using ThermalConductionLawParams = GetPropType;
using SolidEnergyLawParams = GetPropType;
using Model = GetPropType;
enum {
// phase indices
wettingPhaseIdx = MaterialLaw::wettingPhaseIdx,
nonWettingPhaseIdx = MaterialLaw::nonWettingPhaseIdx,
// number of phases
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using FluidState = Opm::ImmiscibleFluidState;
using GlobalPosition = Dune::FieldVector;
using DimMatrix = Dune::FieldMatrix;
template
struct FaceLayout
{
bool contains(Dune::GeometryType gt)
{ return gt.dim() == dim - 1; }
};
using FaceMapper = Dune::MultipleCodimMultipleGeomTypeMapper;
using FractureMapper = Opm::FractureMapper;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FractureProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
temperature_ = 273.15 + 20; // -> 20°C
matrixMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
matrixMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
fractureMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
fractureMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
#if 0 // linear
matrixMaterialParams_.setEntryPC(0.0);
matrixMaterialParams_.setMaxPC(2000.0);
fractureMaterialParams_.setEntryPC(0.0);
fractureMaterialParams_.setMaxPC(1000.0);
#endif
#if 1 // Brooks-Corey
matrixMaterialParams_.setEntryPressure(2000);
matrixMaterialParams_.setLambda(2.0);
matrixMaterialParams_.setPcLowSw(1e-1);
fractureMaterialParams_.setEntryPressure(1000);
fractureMaterialParams_.setLambda(2.0);
fractureMaterialParams_.setPcLowSw(5e-2);
#endif
#if 0 // van Genuchten
matrixMaterialParams_.setVgAlpha(0.0037);
matrixMaterialParams_.setVgN(4.7);
fractureMaterialParams_.setVgAlpha(0.0025);
fractureMaterialParams_.setVgN(4.7);
#endif
matrixMaterialParams_.finalize();
fractureMaterialParams_.finalize();
matrixK_ = this->toDimMatrix_(1e-15); // m^2
fractureK_ = this->toDimMatrix_(1e5 * 1e-15); // m^2
matrixPorosity_ = 0.10;
fracturePorosity_ = 0.25;
fractureWidth_ = 1e-3; // [m]
// initialize the energy-related parameters
initEnergyParams_(thermalConductionParams_, matrixPorosity_);
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "fracture_" << Model::name();
return oss.str();
}
/*!
* \brief Called directly after the time integration.
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template
Scalar temperature([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return temperature_; }
// \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template
const DimMatrix& intrinsicPermeability([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return matrixK_; }
/*!
* \brief Intrinsic permeability of fractures.
*
* \copydoc Doxygen::contextParams
*/
template
const DimMatrix& fractureIntrinsicPermeability([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return fractureK_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template
Scalar porosity([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return matrixPorosity_; }
/*!
* \brief The porosity inside the fractures.
*
* \copydoc Doxygen::contextParams
*/
template
Scalar fracturePorosity([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return fracturePorosity_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template
const MaterialLawParams& materialLawParams([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return matrixMaterialParams_; }
/*!
* \brief The parameters for the material law inside the fractures.
*
* \copydoc Doxygen::contextParams
*/
template
const MaterialLawParams& fractureMaterialLawParams([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return fractureMaterialParams_; }
/*!
* \brief Returns the object representating the fracture topology.
*/
const FractureMapper& fractureMapper() const
{ return this->simulator().vanguard().fractureMapper(); }
/*!
* \brief Returns the width of the fracture.
*
* \todo This method should get one face index instead of two
* vertex indices. This probably requires a new context
* class, though.
*
* \param context The execution context.
* \param spaceIdx1 The local index of the edge's first edge.
* \param spaceIdx2 The local index of the edge's second edge.
* \param timeIdx The index used by the time discretization.
*/
template
Scalar fractureWidth([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx1,
[[maybe_unused]] unsigned spaceIdx2,
[[maybe_unused]] unsigned timeIdx) const
{ return fractureWidth_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template
const ThermalConductionLawParams&
thermalConductionLawParams([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return thermalConductionParams_; }
/*!
* \brief Return the parameters for the energy storage law of the rock
*
* In this case, we assume the rock-matrix to be granite.
*/
template
const SolidEnergyLawParams&
solidEnergyLawParams([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ return solidEnergyParams_; }
// \}
/*!
* \name Boundary conditions
*/
// \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onRightBoundary_(pos)) {
// on the right boundary, we impose a free-flow
// (i.e. Dirichlet) condition
FluidState fluidState;
fluidState.setTemperature(temperature_);
fluidState.setSaturation(wettingPhaseIdx, 0.0);
fluidState.setSaturation(nonWettingPhaseIdx,
1.0 - fluidState.saturation(wettingPhaseIdx));
fluidState.setPressure(wettingPhaseIdx, 1e5);
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
typename FluidSystem::template ParameterCache paramCache;
paramCache.updateAll(fluidState);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fluidState.setDensity(phaseIdx,
FluidSystem::density(fluidState, paramCache, phaseIdx));
fluidState.setViscosity(phaseIdx,
FluidSystem::viscosity(fluidState, paramCache, phaseIdx));
}
// set a free flow (i.e. Dirichlet) boundary
values.setFreeFlow(context, spaceIdx, timeIdx, fluidState);
}
else
// for the upper, lower and left boundaries, use a no-flow
// condition (i.e. a Neumann 0 condition)
values.setNoFlow();
}
// \}
/*!
* \name Volumetric terms
*/
// \{
/*!
* \copydoc FvBaseProblem::constraints
*/
template
void constraints(Constraints& constraints, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (!onLeftBoundary_(pos))
// only impose constraints adjacent to the left boundary
return;
unsigned globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!fractureMapper().isFractureVertex(globalIdx)) {
// do not impose constraints if the finite volume does
// not contain fractures.
return;
}
// if the current finite volume is on the left boundary
// and features a fracture, specify the fracture fluid
// state.
FluidState fractureFluidState;
fractureFluidState.setTemperature(temperature_ + 10.0);
fractureFluidState.setSaturation(wettingPhaseIdx, 1.0);
fractureFluidState.setSaturation(nonWettingPhaseIdx,
1.0 - fractureFluidState.saturation(
wettingPhaseIdx));
Scalar pCFracture[numPhases];
MaterialLaw::capillaryPressures(pCFracture, fractureMaterialParams_,
fractureFluidState);
fractureFluidState.setPressure(wettingPhaseIdx, /*pressure=*/1.0e5);
fractureFluidState.setPressure(nonWettingPhaseIdx,
fractureFluidState.pressure(wettingPhaseIdx)
+ (pCFracture[nonWettingPhaseIdx]
- pCFracture[wettingPhaseIdx]));
constraints.setActive(true);
constraints.assignNaiveFromFracture(fractureFluidState,
matrixMaterialParams_);
}
/*!
* \copydoc FvBaseProblem::initial
*/
template
void initial(PrimaryVariables& values,
[[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
FluidState fluidState;
fluidState.setTemperature(temperature_);
fluidState.setPressure(FluidSystem::wettingPhaseIdx, /*pressure=*/1e5);
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
fluidState.setSaturation(wettingPhaseIdx, 0.0);
fluidState.setSaturation(nonWettingPhaseIdx,
1.0 - fluidState.saturation(wettingPhaseIdx));
values.assignNaive(fluidState);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template
void source(RateVector& rate,
[[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{ rate = Scalar(0.0); }
// \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
void initEnergyParams_(ThermalConductionLawParams& params, Scalar poro)
{
// assume the volumetric heat capacity of granite
solidEnergyParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidEnergyParams_.finalize();
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState fs;
fs.setTemperature(293.15);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::template ParameterCache paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated =
std::pow(lambdaGranite, (1 - poro))
+ std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
}
Scalar lambdaVac = std::pow(lambdaGranite, (1 - poro));
params.setVacuumLambda(lambdaVac);
}
DimMatrix matrixK_;
DimMatrix fractureK_;
Scalar matrixPorosity_;
Scalar fracturePorosity_;
Scalar fractureWidth_;
MaterialLawParams fractureMaterialParams_;
MaterialLawParams matrixMaterialParams_;
ThermalConductionLawParams thermalConductionParams_;
SolidEnergyLawParams solidEnergyParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif // EWOMS_FRACTURE_PROBLEM_HH