// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ #include #include #if HAVE_MPI #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_DUNE_FEM #include #include #include #endif //HAVE_DUNE_FEM #include #include #include #include #include #include #include #include #include #include namespace Opm { std::optional (const Dune::CpGrid&)>> externalLoadBalancer; template EclGenericCpGridVanguard::EclGenericCpGridVanguard() { this->mpiRank = 0; #if HAVE_MPI this->mpiRank = EclGenericVanguard::comm().rank(); #endif // HAVE_MPI } template void EclGenericCpGridVanguard::releaseEquilGrid() { this->equilGrid_.reset(); this->equilCartesianIndexMapper_.reset(); } #if HAVE_MPI template void EclGenericCpGridVanguard:: doLoadBalance_(const Dune::EdgeWeightMethod edgeWeightsMethod, const bool ownersFirst, const bool serialPartitioning, const bool enableDistributedWells, const double zoltanImbalanceTol, const GridView& gridView, const Schedule& schedule, EclipseState& eclState1, EclGenericVanguard::ParallelWellStruct& parallelWells, const int numJacobiBlocks) { if (!this->zoltanParams().empty()) this->grid_->setZoltanParams(setupZoltanParams(this->zoltanParams())); const auto mpiSize = this->grid_->comm().size(); const auto partitionJacobiBlocks = (numJacobiBlocks > 1) && (mpiSize == 1); if ((mpiSize > 1) || (numJacobiBlocks > 1)) { if (this->grid_->size(0) > 0) { // Generally needed in parallel runs both when there is and when // there is not an externally defined load-balancing function. // In addition to being used in CpGrid::loadBalance(), the // transmissibilities are also output to the .INIT file. Thus, // transmissiblity values must exist on the I/O rank for derived // classes such as EclCpGridVanguard<>. this->allocTrans(); } // CpGrid's loadBalance() method uses transmissibilities as edge // weights. This is arguably a layering violation and extracting // the per-face transmissibilities as a linear array is relatively // expensive. We therefore extract transmissibility values only if // the values are actually needed. auto loadBalancerSet = static_cast(externalLoadBalancer.has_value()); this->grid_->comm().broadcast(&loadBalancerSet, 1, 0); std::vector faceTrans; { OPM_TIMEBLOCK(extractTrans); if (loadBalancerSet == 0 || partitionJacobiBlocks) { faceTrans = this->extractFaceTrans(gridView); } } const auto wells = ((mpiSize > 1) || partitionJacobiBlocks) ? schedule.getWellsatEnd() : std::vector{}; // Distribute the grid and switch to the distributed view. if (mpiSize > 1) { this->distributeGrid(edgeWeightsMethod, ownersFirst, serialPartitioning, enableDistributedWells, zoltanImbalanceTol, loadBalancerSet != 0, faceTrans, wells, eclState1, parallelWells); } // Calling Schedule::filterConnections would remove any perforated // cells that exist only on other ranks even in the case of // distributed wells. But we need all connections to figure out the // first cell of a well (e.g. for pressure). Hence this is now // skipped. Rank 0 had everything even before. #if HAVE_OPENCL if (partitionJacobiBlocks) { this->cell_part_ = this->grid_-> zoltanPartitionWithoutScatter(&wells, faceTrans.data(), numJacobiBlocks, zoltanImbalanceTol); } #endif // HAVE_OPENCL } } template void EclGenericCpGridVanguard::distributeFieldProps_(EclipseState& eclState1) { OPM_TIMEBLOCK(distributeFProps); const auto mpiSize = this->grid_->comm().size(); if (mpiSize == 1) { return; } if (auto* parallelEclState = dynamic_cast(&eclState1); parallelEclState != nullptr) { // Reset Cartesian index mapper for automatic creation of field // properties parallelEclState->resetCartesianMapper(this->cartesianIndexMapper_.get()); parallelEclState->switchToDistributedProps(); } else { const auto message = std::string { "Parallel simulator setup is incorrect as " "it does not use ParallelEclipseState" }; OpmLog::error(message); throw std::invalid_argument { message }; } } template std::vector EclGenericCpGridVanguard:: extractFaceTrans(const GridView& gridView) const { auto faceTrans = std::vector(this->grid_->numFaces(), 0.0); const auto elemMapper = ElementMapper { gridView, Dune::mcmgElementLayout() }; for (const auto& elem : elements(gridView, Dune::Partitions::interiorBorder)) { for (const auto& is : intersections(gridView, elem)) { if (!is.neighbor()) { continue; } const auto I = static_cast(elemMapper.index(is.inside())); const auto J = static_cast(elemMapper.index(is.outside())); faceTrans[is.id()] = this->getTransmissibility(I, J); } } return faceTrans; } template void EclGenericCpGridVanguard:: distributeGrid(const Dune::EdgeWeightMethod edgeWeightsMethod, const bool ownersFirst, const bool serialPartitioning, const bool enableDistributedWells, const double zoltanImbalanceTol, const bool loadBalancerSet, const std::vector& faceTrans, const std::vector& wells, EclipseState& eclState1, EclGenericVanguard::ParallelWellStruct& parallelWells) { if (auto* eclState = dynamic_cast(&eclState1); eclState != nullptr) { this->distributeGrid(edgeWeightsMethod, ownersFirst, serialPartitioning, enableDistributedWells, zoltanImbalanceTol, loadBalancerSet, faceTrans, wells, eclState, parallelWells); } else { const auto message = std::string { "Parallel simulator setup is incorrect as " "it does not use ParallelEclipseState" }; OpmLog::error(message); throw std::invalid_argument { message }; } this->grid_->switchToDistributedView(); } template void EclGenericCpGridVanguard:: distributeGrid(const Dune::EdgeWeightMethod edgeWeightsMethod, const bool ownersFirst, const bool serialPartitioning, const bool enableDistributedWells, const double zoltanImbalanceTol, const bool loadBalancerSet, const std::vector& faceTrans, const std::vector& wells, ParallelEclipseState* eclState, EclGenericVanguard::ParallelWellStruct& parallelWells) { OPM_TIMEBLOCK(gridDistribute); const auto isIORank = this->grid_->comm().rank() == 0; PropsDataHandle handle { *this->grid_, *eclState }; const auto addCornerCells = false; const auto overlapLayers = 1; if (loadBalancerSet) { auto parts = isIORank ? (*externalLoadBalancer)(*this->grid_) : std::vector{}; parallelWells = std::get<1>(this->grid_->loadBalance(handle, parts, &wells, ownersFirst, addCornerCells, overlapLayers)); } else { const auto useZoltan = true; parallelWells = std::get<1>(this->grid_->loadBalance(handle, edgeWeightsMethod, &wells, serialPartitioning, faceTrans.data(), ownersFirst, addCornerCells, overlapLayers, useZoltan, zoltanImbalanceTol, enableDistributedWells)); } } #endif // HAVE_MPI template void EclGenericCpGridVanguard::doCreateGrids_(EclipseState& eclState) { const EclipseGrid* input_grid = nullptr; std::vector global_porv; // At this stage the ParallelEclipseState instance is still in global // view; on rank 0 we have undistributed data for the entire grid, on // the other ranks the EclipseState is empty. if (mpiRank == 0) { input_grid = &eclState.getInputGrid(); global_porv = eclState.fieldProps().porv(true); OpmLog::info("\nProcessing grid"); } OPM_TIMEBLOCK(createGrids); #if HAVE_MPI this->grid_ = std::make_unique(EclGenericVanguard::comm()); #else this->grid_ = std::make_unique(); #endif // Note: removed_cells is guaranteed to be empty on ranks other than 0. auto removed_cells = this->grid_->processEclipseFormat(input_grid, &eclState, /*isPeriodic=*/false, /*flipNormals=*/false, /*clipZ=*/false); if (mpiRank == 0) { const auto& active_porv = eclState.fieldProps().porv(false); const auto& unit_system = eclState.getUnits(); const auto& volume_unit = unit_system.name( UnitSystem::measure::volume); double total_pore_volume = unit_system.from_si( UnitSystem::measure::volume, std::accumulate(active_porv.begin(), active_porv.end(), 0.0)); OpmLog::info(fmt::format("Total number of active cells: {} / total pore volume: {:0.0f} {}", grid_->numCells(), total_pore_volume , volume_unit)); double removed_pore_volume = 0; for (const auto& global_index : removed_cells) removed_pore_volume += active_porv[ eclState.getInputGrid().activeIndex(global_index) ]; if (removed_pore_volume > 0) { removed_pore_volume = unit_system.from_si( UnitSystem::measure::volume, removed_pore_volume ); OpmLog::info(fmt::format("Removed {} cells with a pore volume of {:0.0f} {} ({:5.3f} %) due to MINPV/MINPVV", removed_cells.size(), removed_pore_volume, volume_unit, 100 * removed_pore_volume / total_pore_volume)); } } cartesianIndexMapper_ = std::make_unique(*grid_); #if HAVE_MPI { const bool has_numerical_aquifer = eclState.aquifer().hasNumericalAquifer(); int mpiSize = 1; MPI_Comm_size(grid_->comm(), &mpiSize); // when there is numerical aquifers, new NNC are generated during // grid processing we need to pass the NNC from root process to // other processes if (has_numerical_aquifer && mpiSize > 1) { auto nnc_input = eclState.getInputNNC(); EclMpiSerializer ser(grid_->comm()); ser.broadcast(nnc_input); if (mpiRank > 0) { eclState.setInputNNC(nnc_input); } } } #endif // We use separate grid objects: one for the calculation of the initial // condition via EQUIL and one for the actual simulation. The reason is // that the EQUIL code is allergic to distributed grids and the // simulation grid is distributed before the initial condition is // calculated. // // After loadbalance, grid_ will contain a global and distribute view. // equilGrid_ being a shallow copy only the global view. if (mpiRank == 0) { equilGrid_.reset(new Dune::CpGrid(*grid_)); equilCartesianIndexMapper_ = std::make_unique(*equilGrid_); eclState.reset_actnum(UgGridHelpers::createACTNUM(*grid_)); } { auto size = removed_cells.size(); this->grid_->comm().broadcast(&size, 1, 0); if (mpiRank != 0) { removed_cells.resize(size); } this->grid_->comm().broadcast(removed_cells.data(), size, 0); } // Inform the aquifer object that we might have removed/deactivated // cells as part of minimum pore-volume threshold processing. eclState.pruneDeactivatedAquiferConnections(removed_cells); } template void EclGenericCpGridVanguard::doFilterConnections_(Schedule& schedule) { // We only filter if we hold the global grid. Otherwise the filtering // is done after load balancing as in the future the other processes // will hold an empty partition for the global grid and hence filtering // here would remove all well connections. if (this->equilGrid_ != nullptr) { ActiveGridCells activeCells(equilGrid().logicalCartesianSize(), equilGrid().globalCell().data(), equilGrid().size(0)); schedule.filterConnections(activeCells); } #if HAVE_MPI try { // Broadcast another time to remove inactive peforations on // slave processors. eclBroadcast(EclGenericVanguard::comm(), schedule); } catch (const std::exception& broadcast_error) { OpmLog::error(fmt::format("Distributing properties to all processes failed\n" "Internal error message: {}", broadcast_error.what())); MPI_Finalize(); std::exit(EXIT_FAILURE); } #endif // HAVE_MPI } template const Dune::CpGrid& EclGenericCpGridVanguard::equilGrid() const { assert(mpiRank == 0); return *equilGrid_; } template const Dune::CartesianIndexMapper& EclGenericCpGridVanguard::cartesianIndexMapper() const { return *cartesianIndexMapper_; } template const Dune::CartesianIndexMapper& EclGenericCpGridVanguard::equilCartesianIndexMapper() const { assert(mpiRank == 0); assert(equilCartesianIndexMapper_); return *equilCartesianIndexMapper_; } template Scalar EclGenericCpGridVanguard:: computeCellThickness(const typename GridView::template Codim<0>::Entity& element) const { typedef typename Element::Geometry Geometry; static constexpr int zCoord = Element::dimension - 1; Scalar zz1 = 0.0; Scalar zz2 = 0.0; const Geometry& geometry = element.geometry(); // This code only works with CP-grid where the // number of corners are 8 and // also assumes that the first // 4 corners are the top surface and // the 4 next are the bottomn. assert(geometry.corners() == 8); for (int i=0; i < 4; ++i){ zz1 += geometry.corner(i)[zCoord]; zz2 += geometry.corner(i+4)[zCoord]; } zz1 /=4; zz2 /=4; return zz2-zz1; } template class EclGenericCpGridVanguard< Dune::MultipleCodimMultipleGeomTypeMapper< Dune::GridView< Dune::DefaultLeafGridViewTraits>>, Dune::GridView< Dune::DefaultLeafGridViewTraits>, double>; #if HAVE_DUNE_FEM template class EclGenericCpGridVanguard< Dune::MultipleCodimMultipleGeomTypeMapper< Dune::GridView< Dune::Fem::GridPart2GridViewTraits< Dune::Fem::AdaptiveLeafGridPart< Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>>, Dune::GridView< Dune::Fem::GridPart2GridViewTraits< Dune::Fem::AdaptiveLeafGridPart< Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>, double>; template class EclGenericCpGridVanguard< Dune::MultipleCodimMultipleGeomTypeMapper< Dune::Fem::GridPart2GridViewImpl< Dune::Fem::AdaptiveLeafGridPart< Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>, Dune::Fem::GridPart2GridViewImpl< Dune::Fem::AdaptiveLeafGridPart< Dune::CpGrid, Dune::PartitionIteratorType(4), false> >, double>; #endif // HAVE_DUNE_FEM } // namespace Opm