/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template MultisegmentWellEval:: MultisegmentWellEval(WellInterfaceIndices& baseif) : MultisegmentWellGeneric(baseif) , baseif_(baseif) , linSys_(*this) , primary_variables_(baseif) , upwinding_segments_(this->numberOfSegments(), 0) , segment_densities_(this->numberOfSegments(), 0.0) , segment_mass_rates_(this->numberOfSegments(), 0.0) , segment_viscosities_(this->numberOfSegments(), 0.0) , segment_phase_densities_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here? , segment_phase_fractions_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here? , segment_phase_viscosities_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here? , cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0) , cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0) { } template void MultisegmentWellEval:: initMatrixAndVectors(const int num_cells) { linSys_.init(num_cells, baseif_.numPerfs(), baseif_.cells()); primary_variables_.resize(this->numberOfSegments()); } template ConvergenceReport MultisegmentWellEval:: getWellConvergence(const WellState& well_state, const std::vector& B_avg, DeferredLogger& deferred_logger, const double max_residual_allowed, const double tolerance_wells, const double relaxed_inner_tolerance_flow_ms_well, const double tolerance_pressure_ms_wells, const double relaxed_inner_tolerance_pressure_ms_well, const bool relax_tolerance) const { assert(int(B_avg.size()) == baseif_.numComponents()); // checking if any residual is NaN or too large. The two large one is only handled for the well flux std::vector> abs_residual(this->numberOfSegments(), std::vector(numWellEq, 0.0)); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]); } } std::vector maximum_residual(numWellEq, 0.0); ConvergenceReport report; // TODO: the following is a little complicated, maybe can be simplified in some way? for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { for (int seg = 0; seg < this->numberOfSegments(); ++seg) { if (eq_idx < baseif_.numComponents()) { // phase or component mass equations const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx]; if (flux_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = flux_residual; } } else { // pressure or control equation // for the top segment (seg == 0), it is control equation, will be checked later separately if (seg > 0) { // Pressure equation const double pressure_residual = abs_residual[seg][eq_idx]; if (pressure_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = pressure_residual; } } } } } using CR = ConvergenceReport; for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { if (eq_idx < baseif_.numComponents()) { // phase or component mass equations const double flux_residual = maximum_residual[eq_idx]; // TODO: the report can not handle the segment number yet. if (std::isnan(flux_residual)) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()}); } else if (flux_residual > max_residual_allowed) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()}); } else if (!relax_tolerance && flux_residual > tolerance_wells) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()}); } else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()}); } } else { // pressure equation const double pressure_residual = maximum_residual[eq_idx]; const int dummy_component = -1; if (std::isnan(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (std::isinf(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()}); } else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()}); } } } WellConvergence(baseif_). checkConvergenceControlEq(well_state, {tolerance_pressure_ms_wells, tolerance_pressure_ms_wells, tolerance_wells, tolerance_wells, max_residual_allowed}, std::abs(linSys_.residual()[0][SPres]), report, deferred_logger); return report; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) { out.setDerivative(eq_idx, in.derivative(eq_idx)); } return out; } template void MultisegmentWellEval:: computeSegmentFluidProperties(const EvalWell& temperature, const EvalWell& saltConcentration, int pvt_region_index, DeferredLogger& deferred_logger) { std::vector surf_dens(baseif_.numComponents()); // Surface density. for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index); } for (int seg = 0; seg < this->numberOfSegments(); ++seg) { // the compostion of the components inside wellbore under surface condition std::vector mix_s(baseif_.numComponents(), 0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { mix_s[comp_idx] = primary_variables_.surfaceVolumeFraction(seg, comp_idx); } std::vector b(baseif_.numComponents(), 0.0); std::vector visc(baseif_.numComponents(), 0.0); std::vector& phase_densities = segment_phase_densities_[seg]; const EvalWell seg_pressure = primary_variables_.getSegmentPressure(seg); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration); visc[waterCompIdx] = FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, saltConcentration); // TODO: double check here // TODO: should not we use phaseIndex here? phase_densities[waterCompIdx] = b[waterCompIdx] * surf_dens[waterCompIdx]; } EvalWell rv(0.0); EvalWell rvw(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv, rvw); visc[gasCompIdx] = FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv, rvw); phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx] + rv * b[gasCompIdx] * surf_dens[oilCompIdx]; } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx]; } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); visc[oilCompIdx] = FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs); phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx] + rs * b[oilCompIdx] * surf_dens[gasCompIdx]; } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx]; } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } segment_phase_viscosities_[seg] = visc; std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (d <= 0.0) { std::ostringstream sstr; sstr << "Problematic d value " << d << " obtained for well " << baseif_.name() << " during segment density calculations with rs " << rs << ", rv " << rv << " and pressure " << seg_pressure << " obtaining d " << d << " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) " << " for this connection."; deferred_logger.debug(sstr.str()); } else { if (rs > 0.0) { mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv > 0.0) { mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } } EvalWell volrat(0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { volrat += mix[comp_idx] / b[comp_idx]; } this->segment_viscosities_[seg] = 0.; // calculate the average viscosity for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat; // TODO: a little more work needs to be done to handle the negative fractions here this->segment_phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0; this->segment_viscosities_[seg] += visc[comp_idx] * this->segment_phase_fractions_[seg][comp_idx]; } EvalWell density(0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { density += surf_dens[comp_idx] * mix_s[comp_idx]; } this->segment_densities_[seg] = density / volrat; // calculate the mass rates segment_mass_rates_[seg] = 0.; for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { const int upwind_seg = upwinding_segments_[seg]; const EvalWell rate = primary_variables_.getSegmentRateUpwinding(seg, upwind_seg, comp_idx); this->segment_mass_rates_[seg] += rate * surf_dens[comp_idx]; } } } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getQs(const int comp_idx) const { return primary_variables_.getSegmentRate(0, comp_idx); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentWQTotal(const int seg) const { return primary_variables_.evaluation_[seg][WQTotal]; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getWQTotal() const { return getSegmentWQTotal(0); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getHydroPressureLoss(const int seg) const { return segment_densities_[seg] * baseif_.gravity() * this->segment_depth_diffs_[seg]; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getFrictionPressureLoss(const int seg) const { const EvalWell mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = segment_densities_[seg_upwind]; EvalWell visc = segment_viscosities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { density.clearDerivatives(); visc.clearDerivatives(); } const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const double length = this->segmentSet()[seg].totalLength() - this->segmentSet()[outlet_segment_index].totalLength(); assert(length > 0.); const double roughness = this->segmentSet()[seg].roughness(); const double area = this->segmentSet()[seg].crossArea(); const double diameter = this->segmentSet()[seg].internalDiameter(); const double sign = mass_rate < 0. ? 1.0 : - 1.0; return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: pressureDropSpiralICD(const int seg) const { const SICD& sicd = this->segmentSet()[seg].spiralICD(); const int seg_upwind = upwinding_segments_[seg]; const std::vector& phase_fractions = segment_phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = segment_phase_viscosities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; } EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { water_fraction.clearDerivatives(); water_viscosity.clearDerivatives(); oil_fraction.clearDerivatives(); oil_viscosity.clearDerivatives(); gas_fraction.clearDerivatives(); gas_viscosity.clearDerivatives(); density.clearDerivatives(); } const EvalWell liquid_fraction = water_fraction + oil_fraction; // viscosity contribution from the liquid const EvalWell liquid_viscosity_fraction = liquid_fraction < 1.e-30 ? oil_fraction * oil_viscosity + water_fraction * water_viscosity : liquid_fraction * mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd); const EvalWell mixture_viscosity = liquid_viscosity_fraction + gas_fraction * gas_viscosity; const EvalWell reservoir_rate = segment_mass_rates_[seg] / density; const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor(); const double viscosity_cali = sicd.viscosityCalibration(); using MathTool = MathToolbox; const double density_cali = sicd.densityCalibration(); const EvalWell temp_value1 = MathTool::pow(density / density_cali, 0.75); const EvalWell temp_value2 = MathTool::pow(mixture_viscosity / viscosity_cali, 0.25); // formulation before 2016, base_strength is used // const double base_strength = sicd.strength() / density_cali; // formulation since 2016, strength is used instead const double strength = sicd.strength(); const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0; return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: pressureDropAutoICD(const int seg, const UnitSystem& unit_system) const { const AutoICD& aicd = this->segmentSet()[seg].autoICD(); const int seg_upwind = this->upwinding_segments_[seg]; const std::vector& phase_fractions = this->segment_phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = this->segment_phase_viscosities_[seg_upwind]; const std::vector& phase_densities = this->segment_phase_densities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; EvalWell water_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; water_density = phase_densities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; EvalWell oil_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; oil_density = phase_densities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; EvalWell gas_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; gas_density = phase_densities[gas_pos]; } EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { water_fraction.clearDerivatives(); water_viscosity.clearDerivatives(); water_density.clearDerivatives(); oil_fraction.clearDerivatives(); oil_viscosity.clearDerivatives(); oil_density.clearDerivatives(); gas_fraction.clearDerivatives(); gas_viscosity.clearDerivatives(); gas_density.clearDerivatives(); density.clearDerivatives(); } using MathTool = MathToolbox; const EvalWell mixture_viscosity = MathTool::pow(water_fraction, aicd.waterViscExponent()) * water_viscosity + MathTool::pow(oil_fraction, aicd.oilViscExponent()) * oil_viscosity + MathTool::pow(gas_fraction, aicd.gasViscExponent()) * gas_viscosity; const EvalWell mixture_density = MathTool::pow(water_fraction, aicd.waterDensityExponent()) * water_density + MathTool::pow(oil_fraction, aicd.oilDensityExponent()) * oil_density + MathTool::pow(gas_fraction, aicd.gasDensityExponent()) * gas_density; const double rho_reference = aicd.densityCalibration(); const double visc_reference = aicd.viscosityCalibration(); const auto volume_rate_icd = this->segment_mass_rates_[seg] * aicd.scalingFactor() / mixture_density; const double sign = volume_rate_icd <= 0. ? 1.0 : -1.0; // convert 1 unit volume rate using M = UnitSystem::measure; const double unit_volume_rate = unit_system.to_si(M::geometric_volume_rate, 1.); // TODO: we did not consider the maximum allowed rate here const auto result = sign / rho_reference * mixture_density * mixture_density * MathTool::pow(visc_reference/mixture_viscosity, aicd.viscExponent()) * aicd.strength() * MathTool::pow( -sign * volume_rate_icd, aicd.flowRateExponent()) * std::pow(unit_volume_rate, (2. - aicd.flowRateExponent())) ; return result; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: pressureDropValve(const int seg) const { const Valve& valve = this->segmentSet()[seg].valve(); const EvalWell& mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell visc = segment_viscosities_[seg_upwind]; EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { visc.clearDerivatives(); density.clearDerivatives(); } const double additional_length = valve.pipeAdditionalLength(); const double roughness = valve.pipeRoughness(); const double diameter = valve.pipeDiameter(); const double area = valve.pipeCrossArea(); const EvalWell friction_pressure_loss = mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc); const double area_con = valve.conCrossArea(); const double cv = valve.conFlowCoefficient(); const EvalWell constriction_pressure_loss = mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv); const double sign = mass_rate <= 0. ? 1.0 : -1.0; return sign * (friction_pressure_loss + constriction_pressure_loss); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentSurfaceVolume(const EvalWell& temperature, const EvalWell& saltConcentration, const int pvt_region_index, const int seg_idx) const { const EvalWell seg_pressure = primary_variables_.getSegmentPressure(seg_idx); std::vector mix_s(baseif_.numComponents(), 0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { mix_s[comp_idx] = primary_variables_.surfaceVolumeFraction(seg_idx, comp_idx); } std::vector b(baseif_.numComponents(), 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration); } EvalWell rv(0.0); EvalWell rvw(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table rvmax = 0.0; } if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv, rvw); } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table rsmax = 0.0; } if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } // std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl; if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no gas phase // it is the same with zero mix_s[Gas] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (d <= 0.0 || d > 1.0) { std::ostringstream sstr; sstr << "Problematic d value " << d << " obtained for well " << baseif_.name() << " during conversion to surface volume with rs " << rs << ", rv " << rv << " and pressure " << seg_pressure << " obtaining d " << d << " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) " << " for this connection."; OpmLog::debug(sstr.str()); } else { if (rs > 0.0) { mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv > 0.0) { mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } } EvalWell vol_ratio(0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { vol_ratio += mix[comp_idx] / b[comp_idx]; } // We increase the segment volume with a factor 10 to stabilize the system. const double volume = this->segmentSet()[seg_idx].volume(); return volume / vol_ratio; } template void MultisegmentWellEval:: handleAccelerationPressureLoss(const int seg, WellState& well_state) { const double area = this->segmentSet()[seg].crossArea(); const EvalWell mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { density.clearDerivatives(); } EvalWell accelerationPressureLoss = mswellhelpers::velocityHead(area, mass_rate, density); // handling the velocity head of intlet segments for (const int inlet : this->segment_inlets_[seg]) { const int seg_upwind_inlet = upwinding_segments_[inlet]; const double inlet_area = this->segmentSet()[inlet].crossArea(); EvalWell inlet_density = this->segment_densities_[seg_upwind_inlet]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (inlet != seg_upwind_inlet) { inlet_density.clearDerivatives(); } const EvalWell inlet_mass_rate = segment_mass_rates_[inlet]; accelerationPressureLoss -= mswellhelpers::velocityHead(std::max(inlet_area, area), inlet_mass_rate, inlet_density); } // We change the sign of the accelerationPressureLoss for injectors. // Is this correct? Testing indicates that this is what the reference simulator does const double sign = mass_rate < 0. ? 1.0 : - 1.0; accelerationPressureLoss *= sign; auto& segments = well_state.well(baseif_.indexOfWell()).segments; segments.pressure_drop_accel[seg] = accelerationPressureLoss.value(); MultisegmentWellAssemble(baseif_). assemblePressureLoss(seg, seg_upwind, accelerationPressureLoss, linSys_); } template void MultisegmentWellEval:: assembleDefaultPressureEq(const int seg, WellState& well_state) { assert(seg != 0); // not top segment // for top segment, the well control equation will be used. EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg); // we need to handle the pressure difference between the two segments // we only consider the hydrostatic pressure loss first // TODO: we might be able to add member variables to store these values, then we update well state // after converged const auto hydro_pressure_drop = getHydroPressureLoss(seg); auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop.value(); pressure_equation -= hydro_pressure_drop; if (this->frictionalPressureLossConsidered()) { const auto friction_pressure_drop = getFrictionPressureLoss(seg); pressure_equation -= friction_pressure_drop; segments.pressure_drop_friction[seg] = friction_pressure_drop.value(); } // contribution from the outlet segment const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index); const int seg_upwind = upwinding_segments_[seg]; MultisegmentWellAssemble(baseif_). assemblePressureEq(seg, seg_upwind, outlet_segment_index, pressure_equation, outlet_pressure, linSys_); if (this->accelerationalPressureLossConsidered()) { handleAccelerationPressureLoss(seg, well_state); } } template void MultisegmentWellEval:: updateWellStateFromPrimaryVariables(WellState& well_state, const double rho, DeferredLogger& deferred_logger) const { static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; const auto pvtReg = std::max(this->baseif_.wellEcl().pvt_table_number() - 1, 0); const PhaseUsage& pu = baseif_.phaseUsage(); assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ); const int oil_pos = pu.phase_pos[Oil]; auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; auto& segment_rates = segments.rates; auto& disgas = segments.dissolved_gas_rate; auto& vapoil = segments.vaporized_oil_rate; auto& segment_pressure = segments.pressure; for (int seg = 0; seg < this->numberOfSegments(); ++seg) { std::vector fractions(baseif_.numPhases(), 0.0); fractions[oil_pos] = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_.value_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_.value_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } // convert the fractions to be Q_p / G_total to calculate the phase rates for (int p = 0; p < baseif_.numPhases(); ++p) { const double scale = baseif_.scalingFactor(p); // for injection wells, there should only one non-zero scaling factor if (scale > 0.) { fractions[p] /= scale; } else { // this should only happens to injection wells fractions[p] = 0.; } } // calculate the phase rates based on the primary variables const double g_total = primary_variables_.value_[seg][WQTotal]; for (int p = 0; p < baseif_.numPhases(); ++p) { const double phase_rate = g_total * fractions[p]; segment_rates[seg*baseif_.numPhases() + p] = phase_rate; if (seg == 0) { // top segment ws.surface_rates[p] = phase_rate; } } // update the segment pressure segment_pressure[seg] = primary_variables_.value_[seg][SPres]; if (seg == 0) { // top segment ws.bhp = segment_pressure[seg]; } // Calculate other per-phase dynamic quantities. const auto temperature = 0.0; // Ignore thermal effects const auto saltConc = 0.0; // Ignore salt precipitation const auto Rvw = 0.0; // Ignore vaporised water. auto rsMax = 0.0; auto rvMax = 0.0; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { // Both oil and gas active. rsMax = FluidSystem::oilPvt() .saturatedGasDissolutionFactor(pvtReg, temperature, segment_pressure[seg]); rvMax = FluidSystem::gasPvt() .saturatedOilVaporizationFactor(pvtReg, temperature, segment_pressure[seg]); } // 1) Infer phase splitting for oil/gas. const auto& [Rs, Rv] = this->baseif_.rateConverter().inferDissolvedVaporisedRatio (rsMax, rvMax, segment_rates.begin() + (seg + 0)*this->baseif_.numPhases()); if (! FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { vapoil[seg] = disgas[seg] = 0.0; } else { const auto* qs = &segment_rates[seg*this->baseif_.numPhases() + 0]; const auto denom = 1.0 - (Rs * Rv); const auto io = pu.phase_pos[Oil]; const auto ig = pu.phase_pos[Gas]; disgas[seg] = Rs * (qs[io] - Rv*qs[ig]) / denom; vapoil[seg] = Rv * (qs[ig] - Rs*qs[io]) / denom; } // 2) Local condition volume flow rates { // Use std::span<> in C++20 and beyond. const auto rate_start = (seg + 0) * this->baseif_.numPhases(); const auto* surf_rates = segment_rates.data() + rate_start; auto* resv_rates = segments.phase_resv_rates.data() + rate_start; this->baseif_.rateConverter().calcReservoirVoidageRates (pvtReg, segment_pressure[seg], std::max(0.0, Rs), std::max(0.0, Rv), temperature, saltConc, surf_rates, resv_rates); } // 3) Local condition holdup fractions. const auto tot_resv = std::accumulate(segments.phase_resv_rates.begin() + (seg + 0)*this->baseif_.numPhases(), segments.phase_resv_rates.begin() + (seg + 1)*this->baseif_.numPhases(), 0.0); std::transform(segments.phase_resv_rates.begin() + (seg + 0)*this->baseif_.numPhases(), segments.phase_resv_rates.begin() + (seg + 1)*this->baseif_.numPhases(), segments.phase_holdup.begin() + (seg + 0)*this->baseif_.numPhases(), [tot_resv](const auto qr) { return std::clamp(qr / tot_resv, 0.0, 1.0); }); // 4) Local condition flow velocities for segments other than top segment. if (seg > 0) { // Possibly poor approximation // Velocity = Flow rate / cross-sectional area. // Additionally ignores drift flux. const auto area = this->baseif_.wellEcl().getSegments() .getFromSegmentNumber(segments.segment_number()[seg]).crossArea(); const auto velocity = (area > 0.0) ? tot_resv / area : 0.0; std::transform(segments.phase_holdup.begin() + (seg + 0)*this->baseif_.numPhases(), segments.phase_holdup.begin() + (seg + 1)*this->baseif_.numPhases(), segments.phase_velocity.begin() + (seg + 0)*this->baseif_.numPhases(), [velocity](const auto hf) { return (hf > 0.0) ? velocity : 0.0; }); } // 5) Local condition phase viscosities. segments.phase_viscosity[seg*this->baseif_.numPhases() + pu.phase_pos[Oil]] = FluidSystem::oilPvt().viscosity(pvtReg, temperature, segment_pressure[seg], Rs); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { segments.phase_viscosity[seg*this->baseif_.numPhases() + pu.phase_pos[Water]] = FluidSystem::waterPvt().viscosity(pvtReg, temperature, segment_pressure[seg], saltConc); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { segments.phase_viscosity[seg*this->baseif_.numPhases() + pu.phase_pos[Gas]] = FluidSystem::gasPvt().viscosity(pvtReg, temperature, segment_pressure[seg], Rv, Rvw); } } // Segment flow velocity in top segment. { const auto np = this->baseif_.numPhases(); auto segVel = [&segments, np](const auto segmentNumber) { auto v = 0.0; const auto* vel = segments.phase_velocity.data() + segmentNumber*np; for (auto p = 0*np; p < np; ++p) { if (std::abs(vel[p]) > std::abs(v)) { v = vel[p]; } } return v; }; const auto seg = 0; auto maxVel = 0.0; for (const auto& inlet : this->segmentSet()[seg].inletSegments()) { const auto v = segVel(this->segmentNumberToIndex(inlet)); if (std::abs(v) > std::abs(maxVel)) { maxVel = v; } } std::transform(segments.phase_holdup.begin() + (seg + 0)*this->baseif_.numPhases(), segments.phase_holdup.begin() + (seg + 1)*this->baseif_.numPhases(), segments.phase_velocity.begin() + (seg + 0)*this->baseif_.numPhases(), [maxVel](const auto hf) { return (hf > 0.0) ? maxVel : 0.0; }); } WellBhpThpCalculator(this->baseif_) .updateThp(rho, [this]() { return this->baseif_.wellEcl().alq_value(); }, {FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx), FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx), FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)}, well_state, deferred_logger); } template void MultisegmentWellEval:: assembleICDPressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) { // TODO: upwinding needs to be taken care of // top segment can not be a spiral ICD device assert(seg != 0); if (const auto& segment = this->segmentSet()[seg]; (segment.segmentType() == Segment::SegmentType::VALVE) && (segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve MultisegmentWellAssemble(baseif_). assembleTrivialEq(seg, this->primary_variables_.evaluation_[seg][WQTotal].value(), linSys_); auto& ws = well_state.well(baseif_.indexOfWell()); ws.segments.pressure_drop_friction[seg] = 0.; return; } // the pressure equation is something like // p_seg - deltaP - p_outlet = 0. // the major part is how to calculate the deltaP EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg); EvalWell icd_pressure_drop; switch(this->segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : icd_pressure_drop = pressureDropSpiralICD(seg); break; case Segment::SegmentType::AICD : icd_pressure_drop = pressureDropAutoICD(seg, unit_system); break; case Segment::SegmentType::VALVE : icd_pressure_drop = pressureDropValve(seg); break; default: { OPM_DEFLOG_THROW(std::runtime_error, "Segment " + std::to_string(this->segmentSet()[seg].segmentNumber()) + " for well " + baseif_.name() + " is not of ICD type", deferred_logger); } } pressure_equation = pressure_equation - icd_pressure_drop; auto& ws = well_state.well(baseif_.indexOfWell()); ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value(); // contribution from the outlet segment const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index); const int seg_upwind = upwinding_segments_[seg]; MultisegmentWellAssemble(baseif_). assemblePressureEq(seg, seg_upwind, outlet_segment_index, pressure_equation, outlet_pressure, linSys_, FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx), FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); } template void MultisegmentWellEval:: assemblePressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) { switch(this->segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : case Segment::SegmentType::AICD : case Segment::SegmentType::VALVE : { assembleICDPressureEq(seg, unit_system, well_state,deferred_logger); break; } default : assembleDefaultPressureEq(seg, well_state); } } template std::pair > MultisegmentWellEval:: getFiniteWellResiduals(const std::vector& B_avg, DeferredLogger& deferred_logger) const { assert(int(B_avg.size() ) == baseif_.numComponents()); std::vector residuals(numWellEq + 1, 0.0); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { double residual = 0.; if (eq_idx < baseif_.numComponents()) { residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx]; } else { if (seg > 0) { residual = std::abs(linSys_.residual()[seg][eq_idx]); } } if (std::isnan(residual) || std::isinf(residual)) { deferred_logger.debug("nan or inf value for residal get for well " + baseif_.name() + " segment " + std::to_string(seg) + " eq_idx " + std::to_string(eq_idx)); return {false, residuals}; } if (residual > residuals[eq_idx]) { residuals[eq_idx] = residual; } } } // handling the control equation residual { const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]); if (std::isnan(control_residual) || std::isinf(control_residual)) { deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name()); return {false, residuals}; } residuals[numWellEq] = control_residual; } return {true, residuals}; } template double MultisegmentWellEval:: getControlTolerance(const WellState& well_state, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const { double control_tolerance = 0.; const int well_index = baseif_.indexOfWell(); const auto& ws = well_state.well(well_index); if (baseif_.isInjector() ) { auto current = ws.injection_cmode; switch(current) { case Well::InjectorCMode::THP: control_tolerance = tolerance_pressure_ms_wells; break; case Well::InjectorCMode::BHP: control_tolerance = tolerance_wells; break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: control_tolerance = tolerance_wells; break; case Well::InjectorCMode::GRUP: control_tolerance = tolerance_wells; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } if (baseif_.isProducer() ) { auto current = ws.production_cmode; switch(current) { case Well::ProducerCMode::THP: control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar break; case Well::ProducerCMode::BHP: control_tolerance = tolerance_wells; // 0.01 bar break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: control_tolerance = tolerance_wells; // smaller tolerance for rate control break; case Well::ProducerCMode::GRUP: control_tolerance = tolerance_wells; // smaller tolerance for rate control break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } return control_tolerance; } template double MultisegmentWellEval:: getResidualMeasureValue(const WellState& well_state, const std::vector& residuals, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const { assert(int(residuals.size()) == numWellEq + 1); const double rate_tolerance = tolerance_wells; int count = 0; double sum = 0; for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) { if (residuals[eq_idx] > rate_tolerance) { sum += residuals[eq_idx] / rate_tolerance; ++count; } } const double pressure_tolerance = tolerance_pressure_ms_wells; if (residuals[SPres] > pressure_tolerance) { sum += residuals[SPres] / pressure_tolerance; ++count; } const double control_tolerance = getControlTolerance(well_state, tolerance_wells, tolerance_pressure_ms_wells, deferred_logger); if (residuals[SPres + 1] > control_tolerance) { sum += residuals[SPres + 1] / control_tolerance; ++count; } // if (count == 0), it should be converged. assert(count != 0); return sum; } template void MultisegmentWellEval:: updateUpwindingSegments() { for (int seg = 0; seg < this->numberOfSegments(); ++seg) { // special treatment is needed for segment 0 if (seg == 0) { // we are not supposed to have injecting producers and producing injectors assert( ! (baseif_.isProducer() && primary_variables_.evaluation_[seg][WQTotal] > 0.) ); assert( ! (baseif_.isInjector() && primary_variables_.evaluation_[seg][WQTotal] < 0.) ); upwinding_segments_[seg] = seg; continue; } // for other normal segments if (primary_variables_.evaluation_[seg][WQTotal] <= 0.) { upwinding_segments_[seg] = seg; } else { const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); upwinding_segments_[seg] = outlet_segment_index; } } } #define INSTANCE(...) \ template class MultisegmentWellEval,__VA_ARGS__,double>; // One phase INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>) // Two phase INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>) // Blackoil INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>) INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>) } // namespace Opm