// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include
#include
#include
#include
#include
#include
#if HAVE_DUNE_ALUGRID
#include
#include
#include "alucartesianindexmapper.hh"
#endif // HAVE_DUNE_ALUGRID
#include
#include
#include
#include
#include
#if HAVE_DUNE_FEM
#include
#include
#include
#endif
#include
#include
#include
#include
#include
#include
namespace {
constexpr unsigned elemIdxShift = 32; // bits
std::uint64_t isId(std::uint32_t elemIdx1, std::uint32_t elemIdx2)
{
std::uint32_t elemAIdx = std::min(elemIdx1, elemIdx2);
std::uint64_t elemBIdx = std::max(elemIdx1, elemIdx2);
return (elemBIdx< isIdReverse(const std::uint64_t& id)
{
// Assigning an unsigned integer to a narrower type discards the most significant bits.
// See "The C programming language", section A.6.2.
// NOTE that the ordering of element A and B may have changed
std::uint32_t elemAIdx = id;
std::uint32_t elemBIdx = (id - elemAIdx) >> elemIdxShift;
return std::make_pair(elemAIdx, elemBIdx);
}
std::uint64_t directionalIsId(std::uint32_t elemIdx1, std::uint32_t elemIdx2)
{
return (std::uint64_t(elemIdx1)<
EclTransmissibility::
EclTransmissibility(const EclipseState& eclState,
const GridView& gridView,
const CartesianIndexMapper& cartMapper,
const Grid& grid,
std::function(int)> centroids,
bool enableEnergy,
bool enableDiffusivity)
: eclState_(eclState)
, gridView_(gridView)
, cartMapper_(cartMapper)
, grid_(grid)
, centroids_(centroids)
, enableEnergy_(enableEnergy)
, enableDiffusivity_(enableDiffusivity)
{
const UnitSystem& unitSystem = eclState_.getDeckUnitSystem();
transmissibilityThreshold_ = unitSystem.parse("Transmissibility").getSIScaling() * 1e-6;
}
template
Scalar EclTransmissibility::
transmissibility(unsigned elemIdx1, unsigned elemIdx2) const
{
return trans_.at(isId(elemIdx1, elemIdx2));
}
template
Scalar EclTransmissibility::
transmissibilityBoundary(unsigned elemIdx, unsigned boundaryFaceIdx) const
{
return transBoundary_.at(std::make_pair(elemIdx, boundaryFaceIdx));
}
template
Scalar EclTransmissibility::
thermalHalfTrans(unsigned insideElemIdx, unsigned outsideElemIdx) const
{
return thermalHalfTrans_.at(directionalIsId(insideElemIdx, outsideElemIdx));
}
template
Scalar EclTransmissibility::
thermalHalfTransBoundary(unsigned insideElemIdx, unsigned boundaryFaceIdx) const
{
return thermalHalfTransBoundary_.at(std::make_pair(insideElemIdx, boundaryFaceIdx));
}
template
Scalar EclTransmissibility::
diffusivity(unsigned elemIdx1, unsigned elemIdx2) const
{
if (diffusivity_.empty())
return 0.0;
return diffusivity_.at(isId(elemIdx1, elemIdx2));
}
template
void EclTransmissibility::
update(bool global, const std::function& map)
{
const auto& cartDims = cartMapper_.cartesianDimensions();
auto& transMult = eclState_.getTransMult();
const auto& comm = gridView_.comm();
ElementMapper elemMapper(gridView_, Dune::mcmgElementLayout());
// get the ntg values, the ntg values are modified for the cells merged with minpv
const std::vector& ntg = eclState_.fieldProps().get_double("NTG");
const bool updateDiffusivity = eclState_.getSimulationConfig().isDiffusive() && enableDiffusivity_;
unsigned numElements = elemMapper.size();
if (map)
extractPermeability_(map);
else
extractPermeability_();
// calculate the axis specific centroids of all elements
std::array, dimWorld> axisCentroids;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
axisCentroids[dimIdx].resize(numElements);
auto elemIt = gridView_.template begin*codim=*/ 0>();
const auto& elemEndIt = gridView_.template end*codim=*/ 0>();
size_t centroidIdx = 0;
for (; elemIt != elemEndIt; ++elemIt, ++centroidIdx) {
const auto& elem = *elemIt;
unsigned elemIdx = elemMapper.index(elem);
// compute the axis specific "centroids" used for the transmissibilities. for
// consistency with the flow simulator, we use the element centers as
// computed by opm-parser's Opm::EclipseGrid class for all axes.
std::array centroid = centroids_(elemIdx);
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
axisCentroids[axisIdx][elemIdx][dimIdx] = centroid[dimIdx];
}
// reserving some space in the hashmap upfront saves quite a bit of time because
// resizes are costly for hashmaps and there would be quite a few of them if we
// would not have a rough idea of how large the final map will be (the rough idea
// is a conforming Cartesian grid).
trans_.clear();
trans_.reserve(numElements*3*1.05);
transBoundary_.clear();
// if energy is enabled, let's do the same for the "thermal half transmissibilities"
if (enableEnergy_) {
thermalHalfTrans_.clear();
thermalHalfTrans_.reserve(numElements*6*1.05);
thermalHalfTransBoundary_.clear();
}
// if diffusion is enabled, let's do the same for the "diffusivity"
if (updateDiffusivity) {
diffusivity_.clear();
diffusivity_.reserve(numElements*3*1.05);
extractPorosity_();
}
// The MULTZ needs special case if the option is ALL
// Then the smallest multiplier is applied.
// Default is to apply the top and bottom multiplier
bool useSmallestMultiplier;
if (comm.rank() == 0) {
const auto& eclGrid = eclState_.getInputGrid();
useSmallestMultiplier = eclGrid.getMultzOption() == PinchMode::ModeEnum::ALL;
}
if (global && comm.size() > 1) {
comm.broadcast(&useSmallestMultiplier, 1, 0);
}
// compute the transmissibilities for all intersections
elemIt = gridView_.template begin*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
unsigned elemIdx = elemMapper.index(elem);
auto isIt = gridView_.ibegin(elem);
const auto& isEndIt = gridView_.iend(elem);
unsigned boundaryIsIdx = 0;
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// deal with grid boundaries
if (intersection.boundary()) {
// compute the transmissibilty for the boundary intersection
const auto& geometry = intersection.geometry();
const auto& faceCenterInside = geometry.center();
auto faceAreaNormal = intersection.centerUnitOuterNormal();
faceAreaNormal *= geometry.volume();
Scalar transBoundaryIs;
computeHalfTrans_(transBoundaryIs,
faceAreaNormal,
intersection.indexInInside(),
distanceVector_(faceCenterInside,
intersection.indexInInside(),
elemIdx,
axisCentroids),
permeability_[elemIdx]);
// normally there would be two half-transmissibilities that would be
// averaged. on the grid boundary there only is the half
// transmissibility of the interior element.
transBoundary_[std::make_pair(elemIdx, boundaryIsIdx)] = transBoundaryIs;
// for boundary intersections we also need to compute the thermal
// half transmissibilities
if (enableEnergy_) {
Scalar transBoundaryEnergyIs;
computeHalfDiffusivity_(transBoundaryEnergyIs,
faceAreaNormal,
distanceVector_(faceCenterInside,
intersection.indexInInside(),
elemIdx,
axisCentroids),
1.0);
thermalHalfTransBoundary_[std::make_pair(elemIdx, boundaryIsIdx)] =
transBoundaryEnergyIs;
}
++ boundaryIsIdx;
continue;
}
if (!intersection.neighbor()) {
// elements can be on process boundaries, i.e. they are not on the
// domain boundary yet they don't have neighbors.
++ boundaryIsIdx;
continue;
}
const auto& outsideElem = intersection.outside();
unsigned outsideElemIdx = elemMapper.index(outsideElem);
unsigned insideCartElemIdx = cartMapper_.cartesianIndex(elemIdx);
unsigned outsideCartElemIdx = cartMapper_.cartesianIndex(outsideElemIdx);
// we only need to calculate a face's transmissibility
// once...
if (insideCartElemIdx > outsideCartElemIdx)
continue;
// local indices of the faces of the inside and
// outside elements which contain the intersection
int insideFaceIdx = intersection.indexInInside();
int outsideFaceIdx = intersection.indexInOutside();
if (insideFaceIdx == -1) {
// NNC. Set zero transmissibility, as it will be
// *added to* by applyNncToGridTrans_() later.
assert(outsideFaceIdx == -1);
trans_[isId(elemIdx, outsideElemIdx)] = 0.0;
continue;
}
DimVector faceCenterInside;
DimVector faceCenterOutside;
DimVector faceAreaNormal;
typename std::is_same::type isCpGrid;
computeFaceProperties(intersection,
elemIdx,
insideFaceIdx,
outsideElemIdx,
outsideFaceIdx,
faceCenterInside,
faceCenterOutside,
faceAreaNormal,
isCpGrid);
Scalar halfTrans1;
Scalar halfTrans2;
computeHalfTrans_(halfTrans1,
faceAreaNormal,
insideFaceIdx,
distanceVector_(faceCenterInside,
intersection.indexInInside(),
elemIdx,
axisCentroids),
permeability_[elemIdx]);
computeHalfTrans_(halfTrans2,
faceAreaNormal,
outsideFaceIdx,
distanceVector_(faceCenterOutside,
intersection.indexInOutside(),
outsideElemIdx,
axisCentroids),
permeability_[outsideElemIdx]);
applyNtg_(halfTrans1, insideFaceIdx, elemIdx, ntg);
applyNtg_(halfTrans2, outsideFaceIdx, outsideElemIdx, ntg);
// convert half transmissibilities to full face
// transmissibilities using the harmonic mean
Scalar trans;
if (std::abs(halfTrans1) < 1e-30 || std::abs(halfTrans2) < 1e-30)
// avoid division by zero
trans = 0.0;
else
trans = 1.0 / (1.0/halfTrans1 + 1.0/halfTrans2);
// apply the full face transmissibility multipliers
// for the inside ...
if (useSmallestMultiplier)
{
// Currently PINCH(4) is never queries and hence PINCH(4) == TOPBOT is assumed
// and in this branch PINCH(5) == ALL holds
applyAllZMultipliers_(trans, insideFaceIdx, outsideFaceIdx, insideCartElemIdx,
outsideCartElemIdx, transMult, cartDims,
/* pinchTop= */ false);
}
else
{
applyMultipliers_(trans, insideFaceIdx, insideCartElemIdx, transMult);
// ... and outside elements
applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult);
}
// apply the region multipliers (cf. the MULTREGT keyword)
FaceDir::DirEnum faceDir;
switch (insideFaceIdx) {
case 0:
case 1:
faceDir = FaceDir::XPlus;
break;
case 2:
case 3:
faceDir = FaceDir::YPlus;
break;
case 4:
case 5:
faceDir = FaceDir::ZPlus;
break;
default:
throw std::logic_error("Could not determine a face direction");
}
trans *= transMult.getRegionMultiplier(insideCartElemIdx,
outsideCartElemIdx,
faceDir);
trans_[isId(elemIdx, outsideElemIdx)] = trans;
// update the "thermal half transmissibility" for the intersection
if (enableEnergy_) {
Scalar halfDiffusivity1;
Scalar halfDiffusivity2;
computeHalfDiffusivity_(halfDiffusivity1,
faceAreaNormal,
distanceVector_(faceCenterInside,
intersection.indexInInside(),
elemIdx,
axisCentroids),
1.0);
computeHalfDiffusivity_(halfDiffusivity2,
faceAreaNormal,
distanceVector_(faceCenterOutside,
intersection.indexInOutside(),
outsideElemIdx,
axisCentroids),
1.0);
//TODO Add support for multipliers
thermalHalfTrans_[directionalIsId(elemIdx, outsideElemIdx)] = halfDiffusivity1;
thermalHalfTrans_[directionalIsId(outsideElemIdx, elemIdx)] = halfDiffusivity2;
}
// update the "diffusive half transmissibility" for the intersection
if (updateDiffusivity) {
Scalar halfDiffusivity1;
Scalar halfDiffusivity2;
computeHalfDiffusivity_(halfDiffusivity1,
faceAreaNormal,
distanceVector_(faceCenterInside,
intersection.indexInInside(),
elemIdx,
axisCentroids),
porosity_[elemIdx]);
computeHalfDiffusivity_(halfDiffusivity2,
faceAreaNormal,
distanceVector_(faceCenterOutside,
intersection.indexInOutside(),
outsideElemIdx,
axisCentroids),
porosity_[outsideElemIdx]);
applyNtg_(halfDiffusivity1, insideFaceIdx, elemIdx, ntg);
applyNtg_(halfDiffusivity2, outsideFaceIdx, outsideElemIdx, ntg);
//TODO Add support for multipliers
Scalar diffusivity;
if (std::abs(halfDiffusivity1) < 1e-30 || std::abs(halfDiffusivity2) < 1e-30)
// avoid division by zero
diffusivity = 0.0;
else
diffusivity = 1.0 / (1.0/halfDiffusivity1 + 1.0/halfDiffusivity2);
diffusivity_[isId(elemIdx, outsideElemIdx)] = diffusivity;
}
}
}
// potentially overwrite and/or modify transmissibilities based on input from deck
updateFromEclState_(global);
// Create mapping from global to local index
std::unordered_map globalToLocal;
// loop over all elements (global grid) and store Cartesian index
elemIt = grid_.leafGridView().template begin<0>();
for (; elemIt != elemEndIt; ++elemIt) {
int elemIdx = elemMapper.index(*elemIt);
int cartElemIdx = cartMapper_.cartesianIndex(elemIdx);
globalToLocal[cartElemIdx] = elemIdx;
}
applyEditNncToGridTrans_(globalToLocal);
applyNncToGridTrans_(globalToLocal);
//remove very small non-neighbouring transmissibilities
removeSmallNonCartesianTransmissibilities_();
}
template
void EclTransmissibility::
extractPermeability_()
{
unsigned numElem = gridView_.size(/*codim=*/0);
permeability_.resize(numElem);
// read the intrinsic permeabilities from the eclState. Note that all arrays
// provided by eclState are one-per-cell of "uncompressed" grid, whereas the
// simulation grid might remove a few elements. (e.g. because it is distributed
// over several processes.)
const auto& fp = eclState_.fieldProps();
if (fp.has_double("PERMX")) {
const std::vector& permxData = fp.get_double("PERMX");
std::vector permyData;
if (fp.has_double("PERMY"))
permyData = fp.get_double("PERMY");
else
permyData = permxData;
std::vector permzData;
if (fp.has_double("PERMZ"))
permzData = fp.get_double("PERMZ");
else
permzData = permxData;
for (size_t dofIdx = 0; dofIdx < numElem; ++ dofIdx) {
permeability_[dofIdx] = 0.0;
permeability_[dofIdx][0][0] = permxData[dofIdx];
permeability_[dofIdx][1][1] = permyData[dofIdx];
permeability_[dofIdx][2][2] = permzData[dofIdx];
}
// for now we don't care about non-diagonal entries
}
else
throw std::logic_error("Can't read the intrinsic permeability from the ecl state. "
"(The PERM{X,Y,Z} keywords are missing)");
}
template
void EclTransmissibility::
extractPermeability_(const std::function& map)
{
unsigned numElem = gridView_.size(/*codim=*/0);
permeability_.resize(numElem);
// read the intrinsic permeabilities from the eclState. Note that all arrays
// provided by eclState are one-per-cell of "uncompressed" grid, whereas the
// simulation grid might remove a few elements. (e.g. because it is distributed
// over several processes.)
const auto& fp = eclState_.fieldProps();
if (fp.has_double("PERMX")) {
const std::vector& permxData = fp.get_double("PERMX");
std::vector permyData;
if (fp.has_double("PERMY"))
permyData = fp.get_double("PERMY");
else
permyData = permxData;
std::vector permzData;
if (fp.has_double("PERMZ"))
permzData = fp.get_double("PERMZ");
else
permzData = permxData;
for (size_t dofIdx = 0; dofIdx < numElem; ++ dofIdx) {
permeability_[dofIdx] = 0.0;
size_t inputDofIdx = map(dofIdx);
permeability_[dofIdx][0][0] = permxData[inputDofIdx];
permeability_[dofIdx][1][1] = permyData[inputDofIdx];
permeability_[dofIdx][2][2] = permzData[inputDofIdx];
}
// for now we don't care about non-diagonal entries
}
else
throw std::logic_error("Can't read the intrinsic permeability from the ecl state. "
"(The PERM{X,Y,Z} keywords are missing)");
}
template
void EclTransmissibility::
extractPorosity_()
{
// read the intrinsic porosity from the eclState. Note that all arrays
// provided by eclState are one-per-cell of "uncompressed" grid, whereas the
// simulation grid might remove a few elements. (e.g. because it is distributed
// over several processes.)
const auto& fp = eclState_.fieldProps();
if (fp.has_double("PORO")) {
porosity_ = fp.get_double("PORO");
}
else
throw std::logic_error("Can't read the porosityfrom the ecl state. "
"(The PORO keywords are missing)");
}
template
void EclTransmissibility::
removeSmallNonCartesianTransmissibilities_()
{
const auto& cartDims = cartMapper_.cartesianDimensions();
for (auto&& trans: trans_) {
if (trans.second < transmissibilityThreshold_) {
const auto& id = trans.first;
const auto& elements = isIdReverse(id);
int gc1 = std::min(cartMapper_.cartesianIndex(elements.first), cartMapper_.cartesianIndex(elements.second));
int gc2 = std::max(cartMapper_.cartesianIndex(elements.first), cartMapper_.cartesianIndex(elements.second));
// only adjust the NNCs
if (gc2 - gc1 == 1 || gc2 - gc1 == cartDims[0] || gc2 - gc1 == cartDims[0]*cartDims[1])
continue;
//remove transmissibilities less than the threshold (by default 1e-6 in the deck's unit system)
trans.second = 0.0;
}
}
}
template
void EclTransmissibility::
applyAllZMultipliers_(Scalar& trans,
unsigned insideFaceIdx,
unsigned outsideFaceIdx,
unsigned insideCartElemIdx,
unsigned outsideCartElemIdx,
const TransMult& transMult,
const std::array& cartDims,
bool pinchTop)
{
if (insideFaceIdx > 3) { // top or or bottom
assert(insideFaceIdx==5); // as insideCartElemIdx < outsideCartElemIdx holds for the Z column
assert(outsideCartElemIdx > insideCartElemIdx);
auto lastCartElemIdx = outsideCartElemIdx - cartDims[0]*cartDims[1];
// Last multiplier
Scalar mult = transMult.getMultiplier(lastCartElemIdx , FaceDir::ZPlus);
if ( !pinchTop )
{
// pick the smallest multiplier for Z+ while looking down the pillar until reaching the other end of the connection
// While Z- is not all used here.
for(auto cartElemIdx = insideCartElemIdx; cartElemIdx < lastCartElemIdx;
cartElemIdx += cartDims[0]*cartDims[1])
{
mult = std::min(mult, transMult.getMultiplier(cartElemIdx, FaceDir::ZPlus));
}
}
trans *= mult;
applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult);
}
else
{
applyMultipliers_(trans, insideFaceIdx, insideCartElemIdx, transMult);
applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult);
}
}
template
void EclTransmissibility::
updateFromEclState_(bool global)
{
const FieldPropsManager* fp =
(global) ? &(eclState_.fieldProps()) :
&(eclState_.globalFieldProps());
std::array is_tran {fp->tran_active("TRANX"),
fp->tran_active("TRANY"),
fp->tran_active("TRANZ")};
if( !(is_tran[0] ||is_tran[1] || is_tran[2]) )
{
// Skip unneeded expensive traversals
return;
}
std::array keywords {"TRANX", "TRANY", "TRANZ"};
std::array,3> trans = createTransmissibilityArrays_(is_tran);
auto key = keywords.begin();
auto perform = is_tran.begin();
for (auto it = trans.begin(); it != trans.end(); ++it, ++key, ++perform)
{
if(perform)
fp->apply_tran(*key, *it);
}
resetTransmissibilityFromArrays_(is_tran, trans);
}
template
std::array,3>
EclTransmissibility::
createTransmissibilityArrays_(const std::array& is_tran)
{
const auto& cartDims = cartMapper_.cartesianDimensions();
ElementMapper elemMapper(gridView_, Dune::mcmgElementLayout());
auto numElem = gridView_.size(/*codim=*/0);
std::array,3> trans =
{ std::vector(is_tran[0] ? numElem : 0, 0),
std::vector(is_tran[1] ? numElem : 0, 0),
std::vector(is_tran[2] ? numElem : 0, 0)};
// compute the transmissibilities for all intersections
auto elemIt = gridView_.template begin*codim=*/ 0>();
const auto& elemEndIt = gridView_.template end*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
auto isIt = gridView_.ibegin(elem);
const auto& isEndIt = gridView_.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
if (!intersection.neighbor())
continue; // intersection is on the domain boundary
// In the EclState TRANX[c1] is transmissibility in X+
// direction. Ordering of compressed (c1,c2) and cartesian index
// (gc1, gc2) is coherent (c1 < c2 <=> gc1 < gc2). This also
// holds for the global grid. While distributing changes the
// order of the local indices, the transmissibilities are still
// stored at the cell with the lower global cartesian index as
// the fieldprops are communicated by the grid.
unsigned c1 = elemMapper.index(intersection.inside());
unsigned c2 = elemMapper.index(intersection.outside());
int gc1 = cartMapper_.cartesianIndex(c1);
int gc2 = cartMapper_.cartesianIndex(c2);
if (gc1 > gc2)
continue; // we only need to handle each connection once, thank you.
auto isID = isId(c1, c2);
if (gc2 - gc1 == 1 && cartDims[0] > 1) {
if (is_tran[0])
// set simulator internal transmissibilities to values from inputTranx
trans[0][c1] = trans_[isID];
}
else if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
if (is_tran[1])
// set simulator internal transmissibilities to values from inputTrany
trans[1][c1] = trans_[isID];
}
else if (gc2 - gc1 == cartDims[0]*cartDims[1]) {
if (is_tran[2])
// set simulator internal transmissibilities to values from inputTranz
trans[2][c1] = trans_[isID];
}
//else.. We don't support modification of NNC at the moment.
}
}
return trans;
}
template
void EclTransmissibility::
resetTransmissibilityFromArrays_(const std::array& is_tran,
const std::array,3>& trans)
{
const auto& cartDims = cartMapper_.cartesianDimensions();
ElementMapper elemMapper(gridView_, Dune::mcmgElementLayout());
// compute the transmissibilities for all intersections
auto elemIt = gridView_.template begin*codim=*/ 0>();
const auto& elemEndIt = gridView_.template end*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
auto isIt = gridView_.ibegin(elem);
const auto& isEndIt = gridView_.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
if (!intersection.neighbor())
continue; // intersection is on the domain boundary
// In the EclState TRANX[c1] is transmissibility in X+
// direction. Ordering of compressed (c1,c2) and cartesian index
// (gc1, gc2) is coherent (c1 < c2 <=> gc1 < gc2). This also
// holds for the global grid. While distributing changes the
// order of the local indices, the transmissibilities are still
// stored at the cell with the lower global cartesian index as
// the fieldprops are communicated by the grid.
unsigned c1 = elemMapper.index(intersection.inside());
unsigned c2 = elemMapper.index(intersection.outside());
int gc1 = cartMapper_.cartesianIndex(c1);
int gc2 = cartMapper_.cartesianIndex(c2);
if (gc1 > gc2)
continue; // we only need to handle each connection once, thank you.
auto isID = isId(c1, c2);
if (gc2 - gc1 == 1 && cartDims[0] > 1) {
if (is_tran[0])
// set simulator internal transmissibilities to values from inputTranx
trans_[isID] = trans[0][c1];
}
else if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
if (is_tran[1])
// set simulator internal transmissibilities to values from inputTrany
trans_[isID] = trans[1][c1];
}
else if (gc2 - gc1 == cartDims[0]*cartDims[1]) {
if (is_tran[2])
// set simulator internal transmissibilities to values from inputTranz
trans_[isID] = trans[2][c1];
}
//else.. We don't support modification of NNC at the moment.
}
}
}
template
template
void EclTransmissibility::
computeFaceProperties(const Intersection& intersection,
const int,
const int,
const int,
const int,
DimVector& faceCenterInside,
DimVector& faceCenterOutside,
DimVector& faceAreaNormal,
/*isCpGrid=*/std::false_type) const
{
// default implementation for DUNE grids
const auto& geometry = intersection.geometry();
faceCenterInside = geometry.center();
faceCenterOutside = faceCenterInside;
faceAreaNormal = intersection.centerUnitOuterNormal();
faceAreaNormal *= geometry.volume();
}
template
template
void EclTransmissibility::
computeFaceProperties(const Intersection& intersection,
const int insideElemIdx,
const int insideFaceIdx,
const int outsideElemIdx,
const int outsideFaceIdx,
DimVector& faceCenterInside,
DimVector& faceCenterOutside,
DimVector& faceAreaNormal,
/*isCpGrid=*/std::true_type) const
{
int faceIdx = intersection.id();
faceCenterInside = grid_.faceCenterEcl(insideElemIdx, insideFaceIdx);
faceCenterOutside = grid_.faceCenterEcl(outsideElemIdx, outsideFaceIdx);
faceAreaNormal = grid_.faceAreaNormalEcl(faceIdx);
}
template
std::tuple, std::vector>
EclTransmissibility::
applyNncToGridTrans_(const std::unordered_map& cartesianToCompressed)
{
// First scale NNCs with EDITNNC.
std::vector unprocessedNnc;
std::vector processedNnc;
const auto& nnc_input = eclState_.getInputNNC().input();
if (nnc_input.empty())
return std::make_tuple(processedNnc, unprocessedNnc);
for (const auto& nncEntry : nnc_input) {
auto c1 = nncEntry.cell1;
auto c2 = nncEntry.cell2;
auto lowIt = cartesianToCompressed.find(c1);
auto highIt = cartesianToCompressed.find(c2);
int low = (lowIt == cartesianToCompressed.end())? -1 : lowIt->second;
int high = (highIt == cartesianToCompressed.end())? -1 : highIt->second;
if (low > high)
std::swap(low, high);
if (low == -1 && high == -1)
// Silently discard as it is not between active cells
continue;
if (low == -1 || high == -1) {
// Discard the NNC if it is between active cell and inactive cell
std::ostringstream sstr;
sstr << "NNC between active and inactive cells ("
<< low << " -> " << high << ") with globalcell is (" << c1 << "->" << c2 <<")";
OpmLog::warning(sstr.str());
continue;
}
auto candidate = trans_.find(isId(low, high));
if (candidate == trans_.end())
// This NNC is not resembled by the grid. Save it for later
// processing with local cell values
unprocessedNnc.push_back(nncEntry);
else {
// NNC is represented by the grid and might be a neighboring connection
// In this case the transmissibilty is added to the value already
// set or computed.
candidate->second += nncEntry.trans;
processedNnc.push_back(nncEntry);
}
}
return std::make_tuple(processedNnc, unprocessedNnc);
}
template
void EclTransmissibility::
applyEditNncToGridTrans_(const std::unordered_map& globalToLocal)
{
const auto& nnc_input = eclState_.getInputNNC();
const auto& editNnc = nnc_input.edit();
if (editNnc.empty())
return;
const auto& cartDims = cartMapper_.cartesianDimensions();
auto format_ijk = [&cartDims](std::size_t cell) -> std::string {
auto i = cell % cartDims[0]; cell /= cartDims[0];
auto j = cell % cartDims[1];
auto k = cell / cartDims[1];
return fmt::format("({},{},{})", i + 1,j + 1,k + 1);
};
auto print_warning = [&format_ijk, &nnc_input] (const NNCdata& nnc) {
const auto& location = nnc_input.edit_location( nnc );
auto warning = fmt::format("Problem with EDITNNC keyword\n"
"In {} line {} \n"
"No NNC defined for connection {} -> {}", location.filename,
location.lineno, format_ijk(nnc.cell1), format_ijk(nnc.cell2));
OpmLog::warning("EDITNNC", warning);
};
// editNnc is supposed to only reference non-neighboring connections and not
// neighboring connections. Use all entries for scaling if there is an NNC.
// variable nnc incremented in loop body.
auto nnc = editNnc.begin();
auto end = editNnc.end();
std::size_t warning_count = 0;
while (nnc != end) {
auto c1 = nnc->cell1;
auto c2 = nnc->cell2;
auto lowIt = globalToLocal.find(c1);
auto highIt = globalToLocal.find(c2);
if (lowIt == globalToLocal.end() || highIt == globalToLocal.end()) {
print_warning(*nnc);
++nnc;
warning_count++;
continue;
}
auto low = lowIt->second, high = highIt->second;
if (low > high)
std::swap(low, high);
auto candidate = trans_.find(isId(low, high));
if (candidate == trans_.end()) {
print_warning(*nnc);
++nnc;
warning_count++;
}
else {
// NNC exists
while (nnc!= end && c1==nnc->cell1 && c2==nnc->cell2) {
candidate->second *= nnc->trans;
++nnc;
}
}
}
if (warning_count > 0) {
auto warning = fmt::format("Problems with EDITNNC keyword\n"
"A total of {} connections not defined in grid", warning_count);
OpmLog::warning(warning);
}
}
template
void EclTransmissibility::
computeHalfTrans_(Scalar& halfTrans,
const DimVector& areaNormal,
int faceIdx, // in the reference element that contains the intersection
const DimVector& distance,
const DimMatrix& perm) const
{
assert(faceIdx >= 0);
unsigned dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
halfTrans = perm[dimIdx][dimIdx];
Scalar val = 0;
for (unsigned i = 0; i < areaNormal.size(); ++i)
val += areaNormal[i]*distance[i];
halfTrans *= std::abs(val);
halfTrans /= distance.two_norm2();
}
template
void EclTransmissibility::
computeHalfDiffusivity_(Scalar& halfDiff,
const DimVector& areaNormal,
const DimVector& distance,
const Scalar& poro) const
{
halfDiff = poro;
Scalar val = 0;
for (unsigned i = 0; i < areaNormal.size(); ++i)
val += areaNormal[i]*distance[i];
halfDiff *= std::abs(val);
halfDiff /= distance.two_norm2();
}
template
typename EclTransmissibility::DimVector
EclTransmissibility::
distanceVector_(const DimVector& center,
int faceIdx, // in the reference element that contains the intersection
unsigned elemIdx,
const std::array, dimWorld>& axisCentroids) const
{
assert(faceIdx >= 0);
unsigned dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
DimVector x = center;
x -= axisCentroids[dimIdx][elemIdx];
return x;
}
template
void EclTransmissibility::
applyMultipliers_(Scalar& trans,
unsigned faceIdx,
unsigned cartElemIdx,
const TransMult& transMult) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= transMult.getMultiplier(cartElemIdx, FaceDir::XMinus);
break;
case 1: // right
trans *= transMult.getMultiplier(cartElemIdx, FaceDir::XPlus);
break;
case 2: // front
trans *= transMult.getMultiplier(cartElemIdx, FaceDir::YMinus);
break;
case 3: // back
trans *= transMult.getMultiplier(cartElemIdx, FaceDir::YPlus);
break;
case 4: // bottom
trans *= transMult.getMultiplier(cartElemIdx, FaceDir::ZMinus);
break;
case 5: // top
trans *= transMult.getMultiplier(cartElemIdx, FaceDir::ZPlus);
break;
}
}
template
void EclTransmissibility::
applyNtg_(Scalar& trans,
unsigned faceIdx,
unsigned elemIdx,
const std::vector& ntg) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= ntg[elemIdx];
break;
case 1: // right
trans *= ntg[elemIdx];
break;
case 2: // front
trans *= ntg[elemIdx];
break;
case 3: // back
trans *= ntg[elemIdx];
break;
// NTG does not apply to top and bottom faces
}
}
#ifdef HAVE_DUNE_FEM
template class EclTransmissibility>>,
Dune::MultipleCodimMultipleGeomTypeMapper>>>,
Dune::CartesianIndexMapper,
double>;
template class EclTransmissibility >,
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false> > >,
Dune::CartesianIndexMapper,
double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclTransmissibility>>,
Dune::MultipleCodimMultipleGeomTypeMapper>>>,
Dune::CartesianIndexMapper,
double>;
template class EclTransmissibility >,
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false> > >,
Dune::CartesianIndexMapper,
double>;
#endif //HAVE_DUNE_ALUGRID
#else // !DUNE_FEM
template class EclTransmissibility>,
Dune::MultipleCodimMultipleGeomTypeMapper>>,
Dune::CartesianIndexMapper,
double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class
EclTransmissibility
>,
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::GridView>
>,
Dune::CartesianIndexMapper,
double>;
#endif //HAVE_DUNE_ALUGRID
#endif //HAVE_DUNE_FEM
template class EclTransmissibility,
Dune::GridView>, Dune::MultipleCodimMultipleGeomTypeMapper>>,
Dune::CartesianIndexMapper>,
double>;
} // namespace Opm