/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_AQUIFERANALYTICAL_HEADER_INCLUDED
#define OPM_AQUIFERANALYTICAL_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
class AquiferAnalytical : public AquiferInterface
{
public:
using Simulator = GetPropType;
using ElementContext = GetPropType;
using FluidSystem = GetPropType;
using BlackoilIndices = GetPropType;
using RateVector = GetPropType;
using IntensiveQuantities = GetPropType;
using ElementMapper = GetPropType;
enum { enableTemperature = getPropValue() };
enum { enableEnergy = getPropValue() };
enum { enableBrine = getPropValue() };
enum { enableEvaporation = getPropValue() };
enum { enableSaltPrecipitation = getPropValue() };
static constexpr int numEq = BlackoilIndices::numEq;
using Scalar = double;
using Eval = DenseAd::Evaluation;
using FluidState = BlackOilFluidState;
// Constructor
AquiferAnalytical(int aqID,
const std::vector& connections,
const Simulator& ebosSimulator)
: AquiferInterface(aqID, ebosSimulator)
, connections_(connections)
{
}
// Destructor
virtual ~AquiferAnalytical()
{
}
void initFromRestart(const data::Aquifers& aquiferSoln) override
{
auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
this->assignRestartData(xaqPos->second);
this->W_flux_ = xaqPos->second.volume;
this->pa0_ = xaqPos->second.initPressure;
this->solution_set_from_restart_ = true;
}
void initialSolutionApplied() override
{
initQuantities();
}
void beginTimeStep() override
{
ElementContext elemCtx(this->ebos_simulator_);
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(this->ebos_simulator_.gridView())) {
elemCtx.updatePrimaryStencil(elem);
const int cellIdx = elemCtx.globalSpaceIndex(0, 0);
const int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = getValue(iq.fluidState().pressure(this->phaseIdx_()));
}
OPM_END_PARALLEL_TRY_CATCH("AquiferAnalytical::beginTimeStep() failed: ",
this->ebos_simulator_.vanguard().grid().comm());
}
void addToSource(RateVector& rates,
const unsigned cellIdx,
const unsigned timeIdx) override
{
const auto& model = this->ebos_simulator_.model();
const int idx = this->cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
const auto* intQuantsPtr = model.cachedIntensiveQuantities(cellIdx, timeIdx);
if (intQuantsPtr == nullptr) {
throw std::logic_error("Invalid intensive quantities cache detected in AquiferAnalytical::addToSource()");
}
// This is the pressure at td + dt
this->updateCellPressure(this->pressure_current_, idx, *intQuantsPtr);
this->calculateInflowRate(idx, this->ebos_simulator_);
rates[BlackoilIndices::conti0EqIdx + compIdx_()]
+= this->Qai_[idx] / model.dofTotalVolume(cellIdx);
if constexpr (enableEnergy) {
auto fs = intQuantsPtr->fluidState();
if (this->Ta0_.has_value() && this->Qai_[idx] > 0)
{
fs.setTemperature(this->Ta0_.value());
typedef typename std::decay::type::Scalar FsScalar;
typename FluidSystem::template ParameterCache paramCache;
const unsigned pvtRegionIdx = intQuantsPtr->pvtRegionIndex();
paramCache.setRegionIndex(pvtRegionIdx);
paramCache.setMaxOilSat(this->ebos_simulator_.problem().maxOilSaturation(cellIdx));
paramCache.updatePhase(fs, this->phaseIdx_());
const auto& h = FluidSystem::enthalpy(fs, paramCache, this->phaseIdx_());
fs.setEnthalpy(this->phaseIdx_(), h);
}
rates[BlackoilIndices::contiEnergyEqIdx]
+= this->Qai_[idx] *fs.enthalpy(this->phaseIdx_()) * FluidSystem::referenceDensity( this->phaseIdx_(), intQuantsPtr->pvtRegionIndex()) / model.dofTotalVolume(cellIdx);
}
}
std::size_t size() const
{
return this->connections_.size();
}
protected:
virtual void assignRestartData(const data::AquiferData& xaq) = 0;
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
virtual void calculateAquiferCondition() = 0;
virtual void calculateAquiferConstants() = 0;
virtual Scalar aquiferDepth() const = 0;
Scalar gravity_() const
{
return this->ebos_simulator_.problem().gravity()[2];
}
int compIdx_() const
{
if (this->co2store_())
return FluidSystem::oilCompIdx;
return FluidSystem::waterCompIdx;
}
void initQuantities()
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
if (!this->solution_set_from_restart_) {
W_flux_ = Scalar{0};
}
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections
// function
initializeConnections();
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(this->connections_.size(), Scalar{0});
pressure_current_.resize(this->connections_.size(), Scalar{0});
Qai_.resize(this->connections_.size(), Scalar{0});
}
void updateCellPressure(std::vector& pressure_water,
const int idx,
const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(this->phaseIdx_());
}
void updateCellPressure(std::vector& pressure_water,
const int idx,
const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(this->phaseIdx_()).value();
}
void initializeConnections()
{
this->cell_depth_.resize(this->size(), this->aquiferDepth());
this->alphai_.resize(this->size(), 1.0);
this->faceArea_connected_.resize(this->size(), Scalar{0});
// Translate the C face tag into the enum used by opm-parser's TransMult class
FaceDir::DirEnum faceDirection;
bool has_active_connection_on_proc = false;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas{0};
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
const auto& gridView = this->ebos_simulator_.vanguard().gridView();
for (std::size_t idx = 0; idx < this->size(); ++idx) {
const auto global_index = this->connections_[idx].global_index;
const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index);
auto elemIt = gridView.template begin*codim=*/ 0>();
if (cell_index > 0)
std::advance(elemIt, cell_index);
//the global_index is not part of this grid
if ( cell_index < 0 || elemIt->partitionType() != Dune::InteriorEntity)
continue;
has_active_connection_on_proc = true;
this->cellToConnectionIdx_[cell_index] = idx;
this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index);
}
// get areas for all connections
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
for (const auto& elem : elements(gridView)) {
unsigned cell_index = elemMapper.index(elem);
int idx = this->cellToConnectionIdx_[cell_index];
// only deal with connections given by the aquifer
if( idx < 0)
continue;
for (const auto& intersection : intersections(gridView, elem)) {
// only deal with grid boundaries
if (!intersection.boundary())
continue;
int insideFaceIdx = intersection.indexInInside();
switch (insideFaceIdx) {
case 0:
faceDirection = FaceDir::XMinus;
break;
case 1:
faceDirection = FaceDir::XPlus;
break;
case 2:
faceDirection = FaceDir::YMinus;
break;
case 3:
faceDirection = FaceDir::YPlus;
break;
case 4:
faceDirection = FaceDir::ZMinus;
break;
case 5:
faceDirection = FaceDir::ZPlus;
break;
default:
OPM_THROW(std::logic_error,
"Internal error in initialization of aquifer.");
}
if (faceDirection == this->connections_[idx].face_dir) {
this->faceArea_connected_[idx] = this->connections_[idx].influx_coeff;
break;
}
}
denom_face_areas += this->faceArea_connected_.at(idx);
}
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&denom_face_areas, 1);
const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon());
for (std::size_t idx = 0; idx < this->size(); ++idx) {
// Protect against division by zero NaNs.
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? Scalar{0}
: this->faceArea_connected_.at(idx) / denom_face_areas;
}
if (this->solution_set_from_restart_) {
this->rescaleProducedVolume(has_active_connection_on_proc);
}
}
void rescaleProducedVolume(const bool has_active_connection_on_proc)
{
// Needed in parallel restart to approximate influence of aquifer
// being "owned" by a subset of the parallel processes. If the
// aquifer is fully owned by a single process--i.e., if all cells
// connecting to the aquifer are on a single process--then this_area
// is tot_area on that process and zero elsewhere.
const auto this_area = has_active_connection_on_proc
? std::accumulate(this->alphai_.begin(),
this->alphai_.end(),
Scalar{0})
: Scalar{0};
const auto tot_area = this->ebos_simulator_.vanguard()
.grid().comm().sum(this_area);
this->W_flux_ *= this_area / tot_area;
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
Scalar calculateReservoirEquilibrium()
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector pw_aquifer;
Scalar water_pressure_reservoir;
ElementContext elemCtx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
for (const auto& elem : elements(gridView)) {
elemCtx.updatePrimaryStencil(elem);
const auto cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto idx = this->cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
const auto water_density = fs.density(this->phaseIdx_());
const auto gdz =
this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
pw_aquifer.push_back(this->alphai_[idx] *
(water_pressure_reservoir - water_density.value()*gdz));
}
// We take the average of the calculated equilibrium pressures.
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
Scalar vals[2];
vals[0] = std::accumulate(this->alphai_.begin(), this->alphai_.end(), Scalar{0});
vals[1] = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), Scalar{0});
comm.sum(vals, 2);
return vals[1] / vals[0];
}
const std::vector connections_;
// Grid variables
std::vector faceArea_connected_;
std::vector cellToConnectionIdx_;
// Quantities at each grid id
std::vector cell_depth_;
std::vector pressure_previous_;
std::vector pressure_current_;
std::vector Qai_;
std::vector alphai_;
Scalar Tc_{}; // Time constant
Scalar pa0_{}; // initial aquifer pressure
std::optional Ta0_{}; // initial aquifer temperature
Scalar rhow_{};
Eval W_flux_;
bool solution_set_from_restart_ {false};
};
} // namespace Opm
#endif