/* Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #if HAVE_MPI #define BOOST_TEST_MODULE BlackoilAmgTest #define BOOST_TEST_NO_MAIN #include #include #include #include #include #include #include #include #include #include #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7) #include #else #include #endif #include #include #include class MPIError { public: /** @brief Constructor. */ MPIError(std::string s, int e) : errorstring(s), errorcode(e){} /** @brief The error string. */ std::string errorstring; /** @brief The mpi error code. */ int errorcode; }; void MPI_err_handler(MPI_Comm *, int *err_code, ...){ char *err_string=new char[MPI_MAX_ERROR_STRING]; int err_length; MPI_Error_string(*err_code, err_string, &err_length); std::string s(err_string, err_length); std::cerr << "An MPI Error ocurred:"< LocalIndex; template void setupPattern(int N, M& mat, Dune::ParallelIndexSet& indices, int overlapStart, int overlapEnd, int start, int end); template void fillValues(int N, M& mat, int overlapStart, int overlapEnd, int start, int end); template M setupAnisotropic2d(int N, Dune::ParallelIndexSet& indices, const Dune::CollectiveCommunication& p, int *nout, typename M::block_type::value_type eps=1.0); template void setupPattern(int N, M& mat, Dune::ParallelIndexSet& indices, int overlapStart, int overlapEnd, int start, int end) { int n = overlapEnd - overlapStart; typename M::CreateIterator iter = mat.createbegin(); indices.beginResize(); for(int j=0; j < N; j++) for(int i=overlapStart; i < overlapEnd; i++, ++iter) { int global = j*N+i; GridFlag flag = GridAttributes::owner; bool isPublic = false; if((i 0) || (i>= end && i < N-1)) flag=GridAttributes::copy; if(i= end-1) { isPublic = true; indices.add(global, LocalIndex(iter.index(), flag, isPublic)); } iter.insert(iter.index()); // i direction if(i > overlapStart ) // We have a left neighbour iter.insert(iter.index()-1); if(i < overlapEnd-1) // We have a rigt neighbour iter.insert(iter.index()+1); // j direction // Overlap is a dirichlet border, discard neighbours if(flag != GridAttributes::copy) { if(j>0) // lower neighbour iter.insert(iter.index()-n); if(j void fillValues(int N, M& mat, int overlapStart, int overlapEnd, int start, int end, T eps) { DUNE_UNUSED_PARAMETER(N); typedef typename M::block_type Block; Block dval(0), bone(0), bmone(0), beps(0); for(typename Block::RowIterator b = dval.begin(); b != dval.end(); ++b) b->operator[](b.index())=2.0+2.0*eps; for(typename Block::RowIterator b=bone.begin(); b != bone.end(); ++b) b->operator[](b.index())=1.0; for(typename Block::RowIterator b=bmone.begin(); b != bmone.end(); ++b) b->operator[](b.index())=-1.0; for(typename Block::RowIterator b=beps.begin(); b != beps.end(); ++b) b->operator[](b.index())=-eps; int n = overlapEnd-overlapStart; typedef typename M::ColIterator ColIterator; typedef typename M::RowIterator RowIterator; for (RowIterator i = mat.begin(); i != mat.end(); ++i) { // calculate coordinate int y = i.index() / n; int x = overlapStart + i.index() - y * n; ColIterator endi = (*i).end(); if(x= end) { // || x==0 || x==N-1 || y==0 || y==N-1){ // overlap node is dirichlet border ColIterator j = (*i).begin(); for(; j.index() < i.index(); ++j) *j=0; *j = bone; for(++j; j != endi; ++j) *j=0; }else{ for(ColIterator j = (*i).begin(); j != endi; ++j) if(j.index() == i.index()) *j=dval; else if(j.index()+1==i.index() || j.index()-1==i.index()) *j=beps; else *j=bmone; } } } template void setBoundary(V& lhs, V& rhs, const G& n, Dune::ParallelIndexSet& indices) { typedef typename Dune::ParallelIndexSet::const_iterator Iter; for(Iter i=indices.begin(); i != indices.end(); ++i) { G x = i->global()/n; G y = i->global()%n; if(x==0 || y ==0 || x==n-1 || y==n-1) { //double h = 1.0 / ((double) (n-1)); lhs[i->local()]=rhs[i->local()]=0; //((double)x)*((double)y)*h*h; } } } template void setBoundary(V& lhs, V& rhs, const G& N) { typedef typename V::block_type Block; typedef typename Block::value_type T; for(int j=0; j < N; ++j) for(int i=0; i < N; i++) if(i==0 || j ==0 || i==N-1 || j==N-1) { T h = 1.0 / ((double) (N-1)); T x, y; if(i==N-1) x=1; else x = ((T) i)*h; if(j==N-1) y = 1; else y = ((T) j)*h; lhs[j*N+i]=rhs[j*N+i]=0; //x*y; } } template M setupAnisotropic2d(int N, Dune::ParallelIndexSet& indices, const Dune::CollectiveCommunication& p, int *nout, typename M::block_type::value_type eps) { int procs=p.size(), rank=p.rank(); typedef M BCRSMat; // calculate size of local matrix in the distributed direction int start, end, overlapStart, overlapEnd; int n = N/procs; // number of unknowns per process int bigger = N%procs; // number of process with n+1 unknows // Compute owner region if(rank0) overlapStart = start - 1; else overlapStart = start; if(end MatrixBlock; typedef Dune::BCRSMatrix BCRSMat; typedef Dune::FieldVector VectorBlock; typedef Dune::BlockVector Vector; typedef int GlobalId; typedef Dune::OwnerOverlapCopyCommunication Communication; typedef Dune::OverlappingSchwarzOperator Operator; int argc; char** argv; const auto& ccomm = Dune::MPIHelper::instance(argc, argv).getCollectiveCommunication(); Communication comm(ccomm); int n=0; BCRSMat mat = setupAnisotropic2d(N, comm.indexSet(), comm.communicator(), &n, 1); comm.remoteIndices().template rebuild(); Vector b(mat.N()), x(mat.M()); b=0; x=100; setBoundary(x, b, N, comm.indexSet()); Operator fop(mat, comm); Dune::OverlappingSchwarzScalarProduct sp(comm); Dune::InverseOperatorResult r; using namespace std::string_literals; Opm::PropertyTree prm; prm.put("type", "amg"s); std::function weights = [&mat]() { return Opm::Amg::getQuasiImpesWeights(mat, 0, false); }; auto amg = Opm::PreconditionerFactory::create(fop, prm, weights, comm); Dune::CGSolver amgCG(fop, sp, *amg, 10e-8, 300, (ccomm.rank()==0) ? 2 : 0); amgCG.apply(x,b,r); } bool init_unit_test_func() { return true; } int main(int argc, char** argv) { const auto& helper = Dune::MPIHelper::instance(argc, argv); DUNE_UNUSED_PARAMETER(helper); boost::unit_test::unit_test_main(&init_unit_test_func, argc, argv); } #else int main () { return 0; } #endif // #if HAVE_MPI