// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::VtkMultiPhaseModule
*/
#ifndef EWOMS_VTK_MULTI_PHASE_MODULE_HH
#define EWOMS_VTK_MULTI_PHASE_MODULE_HH
#include "vtkmultiwriter.hh"
#include "baseoutputmodule.hh"
#include
#include
#include
#include
#include
#include
namespace Opm::Properties {
namespace TTag {
// create new type tag for the VTK multi-phase output
struct VtkMultiPhase {};
} // namespace TTag
// create the property tags needed for the multi phase module
template
struct VtkWriteExtrusionFactor { using type = UndefinedProperty; };
template
struct VtkWritePressures { using type = UndefinedProperty; };
template
struct VtkWriteDensities { using type = UndefinedProperty; };
template
struct VtkWriteSaturations { using type = UndefinedProperty; };
template
struct VtkWriteMobilities { using type = UndefinedProperty; };
template
struct VtkWriteRelativePermeabilities { using type = UndefinedProperty; };
template
struct VtkWriteViscosities { using type = UndefinedProperty; };
template
struct VtkWriteAverageMolarMasses { using type = UndefinedProperty; };
template
struct VtkWritePorosity { using type = UndefinedProperty; };
template
struct VtkWriteIntrinsicPermeabilities { using type = UndefinedProperty; };
template
struct VtkWritePotentialGradients { using type = UndefinedProperty; };
template
struct VtkWriteFilterVelocities { using type = UndefinedProperty; };
// set default values for what quantities to output
template
struct VtkWriteExtrusionFactor { static constexpr bool value = false; };
template
struct VtkWritePressures { static constexpr bool value = true; };
template
struct VtkWriteDensities { static constexpr bool value = true; };
template
struct VtkWriteSaturations { static constexpr bool value = true; };
template
struct VtkWriteMobilities { static constexpr bool value = false; };
template
struct VtkWriteRelativePermeabilities { static constexpr bool value = true; };
template
struct VtkWriteViscosities { static constexpr bool value = false; };
template
struct VtkWriteAverageMolarMasses { static constexpr bool value = false; };
template
struct VtkWritePorosity { static constexpr bool value = true; };
template
struct VtkWriteIntrinsicPermeabilities { static constexpr bool value = false; };
template
struct VtkWritePotentialGradients { static constexpr bool value = false; };
template
struct VtkWriteFilterVelocities { static constexpr bool value = false; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup Vtk
*
* \brief VTK output module for quantities which make sense for all
* models which deal with multiple fluid phases in porous media
* that don't use flashy concepts like interfacial area.
*
* This module deals with the following quantities:
* - Pressures of all fluid phases
* - Densities of all fluid phases
* - Saturations of all fluid phases
* - Mobilities of all fluid phases
* - Relative permeabilities of all fluid phases
* - Viscosities of all fluid phases
* - Average molar masses of all fluid phases
* - Porosity of the medium
* - Norm of the intrinsic permeability of the medium
*/
template
class VtkMultiPhaseModule : public BaseOutputModule
{
using ParentType = BaseOutputModule;
using Simulator = GetPropType;
using Scalar = GetPropType;
using ElementContext = GetPropType;
using GridView = GetPropType;
using FluidSystem = GetPropType;
using DiscBaseOutputModule = GetPropType;
static const int vtkFormat = getPropValue();
using VtkMultiWriter = ::Opm::VtkMultiWriter;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = getPropValue() };
using ScalarBuffer = typename ParentType::ScalarBuffer;
using VectorBuffer = typename ParentType::VectorBuffer;
using TensorBuffer = typename ParentType::TensorBuffer;
using PhaseBuffer = typename ParentType::PhaseBuffer;
using DimVector = Dune::FieldVector;
using PhaseVectorBuffer = std::array;
public:
VtkMultiPhaseModule(const Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Register all run-time parameters for the multi-phase VTK output module.
*/
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteExtrusionFactor,
"Include the extrusion factor of the degrees of freedom into the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWritePressures,
"Include the phase pressures in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteDensities,
"Include the phase densities in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteSaturations,
"Include the phase saturations in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteMobilities,
"Include the phase mobilities in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteRelativePermeabilities,
"Include the phase relative permeabilities in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteViscosities,
"Include component phase viscosities in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteAverageMolarMasses,
"Include the average phase mass in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWritePorosity,
"Include the porosity in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteIntrinsicPermeabilities,
"Include the intrinsic permeability in the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWriteFilterVelocities,
"Include in the filter velocities of the phases the VTK output files");
EWOMS_REGISTER_PARAM(TypeTag, bool, VtkWritePotentialGradients,
"Include the phase pressure potential gradients in the VTK output files");
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to the VTK file.
*/
void allocBuffers()
{
if (extrusionFactorOutput_()) this->resizeScalarBuffer_(extrusionFactor_);
if (pressureOutput_()) this->resizePhaseBuffer_(pressure_);
if (densityOutput_()) this->resizePhaseBuffer_(density_);
if (saturationOutput_()) this->resizePhaseBuffer_(saturation_);
if (mobilityOutput_()) this->resizePhaseBuffer_(mobility_);
if (relativePermeabilityOutput_()) this->resizePhaseBuffer_(relativePermeability_);
if (viscosityOutput_()) this->resizePhaseBuffer_(viscosity_);
if (averageMolarMassOutput_()) this->resizePhaseBuffer_(averageMolarMass_);
if (porosityOutput_()) this->resizeScalarBuffer_(porosity_);
if (intrinsicPermeabilityOutput_()) this->resizeTensorBuffer_(intrinsicPermeability_);
if (velocityOutput_()) {
size_t nDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
velocity_[phaseIdx].resize(nDof);
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
velocity_[phaseIdx][dofIdx].resize(dimWorld);
velocity_[phaseIdx][dofIdx] = 0.0;
}
}
this->resizePhaseBuffer_(velocityWeight_);
}
if (potentialGradientOutput_()) {
size_t nDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
potentialGradient_[phaseIdx].resize(nDof);
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
potentialGradient_[phaseIdx][dofIdx].resize(dimWorld);
potentialGradient_[phaseIdx][dofIdx] = 0.0;
}
}
this->resizePhaseBuffer_(potentialWeight_);
}
}
/*!
* \brief Modify the internal buffers according to the intensive quantities seen on
* an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!EWOMS_GET_PARAM(TypeTag, bool, EnableVtkOutput))
return;
const auto& problem = elemCtx.problem();
for (unsigned i = 0; i < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++i) {
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(i, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
if (extrusionFactorOutput_()) extrusionFactor_[I] = intQuants.extrusionFactor();
if (porosityOutput_()) porosity_[I] = getValue(intQuants.porosity());
if (intrinsicPermeabilityOutput_()) {
const auto& K = problem.intrinsicPermeability(elemCtx, i, /*timeIdx=*/0);
for (unsigned rowIdx = 0; rowIdx < K.rows; ++rowIdx)
for (unsigned colIdx = 0; colIdx < K.cols; ++colIdx)
intrinsicPermeability_[I][rowIdx][colIdx] = K[rowIdx][colIdx];
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
if (pressureOutput_())
pressure_[phaseIdx][I] = getValue(fs.pressure(phaseIdx));
if (densityOutput_())
density_[phaseIdx][I] = getValue(fs.density(phaseIdx));
if (saturationOutput_())
saturation_[phaseIdx][I] = getValue(fs.saturation(phaseIdx));
if (mobilityOutput_())
mobility_[phaseIdx][I] = getValue(intQuants.mobility(phaseIdx));
if (relativePermeabilityOutput_())
relativePermeability_[phaseIdx][I] = getValue(intQuants.relativePermeability(phaseIdx));
if (viscosityOutput_())
viscosity_[phaseIdx][I] = getValue(fs.viscosity(phaseIdx));
if (averageMolarMassOutput_())
averageMolarMass_[phaseIdx][I] = getValue(fs.averageMolarMass(phaseIdx));
}
}
if (potentialGradientOutput_()) {
// calculate velocities if requested
for (unsigned faceIdx = 0; faceIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ faceIdx) {
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, /*timeIdx=*/0);
unsigned i = extQuants.interiorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar weight = extQuants.extrusionFactor();
potentialWeight_[phaseIdx][I] += weight;
const auto& inputPGrad = extQuants.potentialGrad(phaseIdx);
DimVector pGrad;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
pGrad[dimIdx] = getValue(inputPGrad[dimIdx])*weight;
potentialGradient_[phaseIdx][I] += pGrad;
} // end for all phases
} // end for all faces
}
if (velocityOutput_()) {
// calculate velocities if requested
for (unsigned faceIdx = 0; faceIdx < elemCtx.numInteriorFaces(/*timeIdx=*/0); ++ faceIdx) {
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, /*timeIdx=*/0);
unsigned i = extQuants.interiorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
unsigned j = extQuants.exteriorIndex();
unsigned J = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar weight = std::max(1e-16,
std::abs(getValue(extQuants.volumeFlux(phaseIdx))));
Valgrind::CheckDefined(extQuants.extrusionFactor());
assert(extQuants.extrusionFactor() > 0);
weight *= extQuants.extrusionFactor();
const auto& inputV = extQuants.filterVelocity(phaseIdx);
DimVector v;
for (unsigned k = 0; k < dimWorld; ++k)
v[k] = getValue(inputV[k]);
if (v.two_norm() > 1e-20)
weight /= v.two_norm();
v *= weight;
velocity_[phaseIdx][I] += v;
velocity_[phaseIdx][J] += v;
velocityWeight_[phaseIdx][I] += weight;
velocityWeight_[phaseIdx][J] += weight;
} // end for all phases
} // end for all faces
}
}
/*!
* \brief Add all buffers to the VTK output writer.
*/
void commitBuffers(BaseOutputWriter& baseWriter)
{
VtkMultiWriter *vtkWriter = dynamic_cast(&baseWriter);
if (!vtkWriter)
return;
if (extrusionFactorOutput_())
this->commitScalarBuffer_(baseWriter, "extrusionFactor", extrusionFactor_);
if (pressureOutput_())
this->commitPhaseBuffer_(baseWriter, "pressure_%s", pressure_);
if (densityOutput_())
this->commitPhaseBuffer_(baseWriter, "density_%s", density_);
if (saturationOutput_())
this->commitPhaseBuffer_(baseWriter, "saturation_%s", saturation_);
if (mobilityOutput_())
this->commitPhaseBuffer_(baseWriter, "mobility_%s", mobility_);
if (relativePermeabilityOutput_())
this->commitPhaseBuffer_(baseWriter, "relativePerm_%s", relativePermeability_);
if (viscosityOutput_())
this->commitPhaseBuffer_(baseWriter, "viscosity_%s", viscosity_);
if (averageMolarMassOutput_())
this->commitPhaseBuffer_(baseWriter, "averageMolarMass_%s", averageMolarMass_);
if (porosityOutput_())
this->commitScalarBuffer_(baseWriter, "porosity", porosity_);
if (intrinsicPermeabilityOutput_())
this->commitTensorBuffer_(baseWriter, "intrinsicPerm", intrinsicPermeability_);
if (velocityOutput_()) {
size_t numDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// first, divide the velocity field by the
// respective finite volume's surface area
for (unsigned i = 0; i < numDof; ++i)
velocity_[phaseIdx][i] /= velocityWeight_[phaseIdx][i];
// commit the phase velocity
char name[512];
snprintf(name, 512, "filterVelocity_%s", FluidSystem::phaseName(phaseIdx));
DiscBaseOutputModule::attachVectorDofData_(baseWriter, velocity_[phaseIdx], name);
}
}
if (potentialGradientOutput_()) {
size_t numDof = this->simulator_.model().numGridDof();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// first, divide the velocity field by the
// respective finite volume's surface area
for (unsigned i = 0; i < numDof; ++i)
potentialGradient_[phaseIdx][i] /= potentialWeight_[phaseIdx][i];
// commit the phase velocity
char name[512];
snprintf(name, 512, "gradP_%s", FluidSystem::phaseName(phaseIdx));
DiscBaseOutputModule::attachVectorDofData_(baseWriter,
potentialGradient_[phaseIdx],
name);
}
}
}
/*!
* \brief Returns true iff the module needs to access the extensive quantities of a
* context to do its job.
*
* For example, this happens if velocities or gradients should be written. Always
* returning true here does not do any harm from the correctness perspective, but it
* slows down writing the output fields.
*/
virtual bool needExtensiveQuantities() const final
{
return velocityOutput_() || potentialGradientOutput_();
}
private:
static bool extrusionFactorOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteExtrusionFactor);
return val;
}
static bool pressureOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWritePressures);
return val;
}
static bool densityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteDensities);
return val;
}
static bool saturationOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteSaturations);
return val;
}
static bool mobilityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteMobilities);
return val;
}
static bool relativePermeabilityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteRelativePermeabilities);
return val;
}
static bool viscosityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteViscosities);
return val;
}
static bool averageMolarMassOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteAverageMolarMasses);
return val;
}
static bool porosityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWritePorosity);
return val;
}
static bool intrinsicPermeabilityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteIntrinsicPermeabilities);
return val;
}
static bool velocityOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWriteFilterVelocities);
return val;
}
static bool potentialGradientOutput_()
{
static bool val = EWOMS_GET_PARAM(TypeTag, bool, VtkWritePotentialGradients);
return val;
}
ScalarBuffer extrusionFactor_;
PhaseBuffer pressure_;
PhaseBuffer density_;
PhaseBuffer saturation_;
PhaseBuffer mobility_;
PhaseBuffer relativePermeability_;
PhaseBuffer viscosity_;
PhaseBuffer averageMolarMass_;
ScalarBuffer porosity_;
TensorBuffer intrinsicPermeability_;
PhaseVectorBuffer velocity_;
PhaseBuffer velocityWeight_;
PhaseVectorBuffer potentialGradient_;
PhaseBuffer potentialWeight_;
};
} // namespace Opm
#endif