// $Id:$ /***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis * * Copyright (C) 2009 by Andreas Lauser * * Institute of Hydraulic Engineering * * University of Stuttgart, Germany * * email: .@iws.uni-stuttgart.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version, as long as this copyright notice * * is included in its original form. * * * * This program is distributed WITHOUT ANY WARRANTY. * *****************************************************************************/ #ifndef DUNE_TUTORIALPROBLEM_COUPLED_HH #define DUNE_TUTORIALPROBLEM_COUPLED_HH // fluid properties #include #include // the numerical model #include // the grid used #include #include // the soil to be used #include "tutorialsoil_coupled.hh" namespace Dune { // forward declaration of the problem class template class TutorialProblemCoupled; namespace Properties { // create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dune::TutorialProblemCoupled type; }; // Set the grid SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/ { typedef Dune::SGrid<2,2> type; static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/ { typedef typename SGrid<2,2>::ctype ctype; Dune::FieldVector cellRes; Dune::FieldVector lowerLeft(0.0); Dune::FieldVector upperRight; cellRes[0] = 45; cellRes[1] = 15; upperRight[0] = 300; upperRight[1] = 100; return new Dune::SGrid<2,2>(cellRes, lowerLeft, upperRight); } }; // Set the wetting and non-wetting phases SET_TYPE_PROP(TutorialProblemCoupled, WettingPhase, Dune::Water); /*@\label{tutorial-coupled:set-wetting}@*/ SET_TYPE_PROP(TutorialProblemCoupled, NonwettingPhase, Dune::Oil);/*@\label{tutorial-coupled:set-nonwetting}@*/ // Set the soil properties SET_PROP(TutorialProblemCoupled, Soil) /*@\label{tutorial-coupled:set-soil}@*/ { private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid; typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; public: typedef Dune::TutorialSoil type; }; // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ } // Definition of the actual problem template class TutorialProblemCoupled : public TwoPBoxProblem > { typedef TutorialProblemCoupled ThisType; typedef TwoPBoxProblem ParentType; typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView; // Grid and world dimension enum { dim = GridView::dimension, dimWorld = GridView::dimensionworld, }; typedef typename GridView::Grid::ctype CoordScalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices; typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim::Entity Vertex; typedef typename GridView::IntersectionIterator IntersectionIterator; typedef Dune::FieldVector LocalPosition; typedef Dune::FieldVector GlobalPosition; typedef typename GET_PROP(TypeTag, PTAG(SolutionTypes)) SolutionTypes; typedef typename SolutionTypes::PrimaryVarVector PrimaryVarVector; typedef typename SolutionTypes::BoundaryTypeVector BoundaryTypeVector; typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry; public: TutorialProblemCoupled(const GridView &gridView) : ParentType(gridView) {} // Return the temperature within the domain. We use 10 degrees Celsius. Scalar temperature() const { return 283.15; }; // Specifies which kind of boundary condition should be used for // which equation on a given boundary segment. void boundaryTypes(BoundaryTypeVector &values, const Element &element, const FVElementGeometry &fvElemGeom, const IntersectionIterator &isIt, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &pos = element.geometry().corner(scvIdx); if (pos[0] < eps_) // dirichlet conditions on left boundary values = BoundaryConditions::dirichlet; else // neuman for the remaining boundaries values = BoundaryConditions::neumann; } // Evaluate the boundary conditions for a dirichlet boundary // segment. For this method, the 'values' parameter stores // primary variables. void dirichlet(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, const IntersectionIterator &isIt, int scvIdx, int boundaryFaceIdx) const { values[Indices::pW] = 200.0e3; // 200 000 Pa = 2 bar values[Indices::sN] = 1.0; // 100 % oil saturation } // Evaluate the boundary conditions for a neumann boundary // segment. For this method, the 'values' parameter stores the // mass flux in normal direction of each phase. Negative values // mean influx. void neumann(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, const IntersectionIterator &isIt, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &pos = element.geometry().corner(scvIdx); Scalar right = this->bboxMax()[0]; if (pos[0] > right - eps_) { // outflow of 0.3 g/(m * s) oil on the right boundary of the // domain values[Indices::phase2Mass(Indices::wPhase)] = 0; values[Indices::phase2Mass(Indices::nPhase)] = 0.3e-3; } else { // no-flow on the remaining neumann-boundaries values[Indices::phase2Mass(Indices::wPhase)] = 0; values[Indices::phase2Mass(Indices::nPhase)] = 0; } } // Evaluate the initial value for a control volume. For this // method, the 'values' parameter stores primary variables. void initial(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::pW] = 200.0e3; // 200 000 Pa = 2 bar values[Indices::sN] = 1.0; } // Evaluate the source term for all phases within a given // sub-control-volume. For this method, the \a values parameter // stores the rate mass generated or annihilate per volume // unit. Positive values mean that mass is created, negative ones // mean that it vanishes. void source(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::phase2Mass(Indices::wPhase)] = 0.0; values[Indices::phase2Mass(Indices::nPhase)] = 0.0; } private: static const Scalar eps_ = 3e-6; }; } #endif