/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
namespace Opm
{
template
WellInterface::
WellInterface(const Well& well,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const int first_perf_index,
const std::vector& perf_data)
: well_ecl_(well)
, current_step_(time_step)
, param_(param)
, rateConverter_(rate_converter)
, pvtRegionIdx_(pvtRegionIdx)
, num_components_(num_components)
, number_of_phases_(num_phases)
, index_of_well_(index_of_well)
, first_perf_(first_perf_index)
{
if (time_step < 0) {
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
}
ref_depth_ = well.getRefDepth();
// We do not want to count SHUT perforations here, so
// it would be wrong to use wells.getConnections().size().
number_of_perforations_ = perf_data.size();
// perforations related
{
well_cells_.resize(number_of_perforations_);
well_index_.resize(number_of_perforations_);
saturation_table_number_.resize(number_of_perforations_);
int perf = 0;
for (const auto& pd : perf_data) {
well_cells_[perf] = pd.cell_index;
well_index_[perf] = pd.connection_transmissibility_factor;
saturation_table_number_[perf] = pd.satnum_id;
++perf;
}
int all_perf = 0;
originalConnectionIndex_.reserve(perf_data.size());
for (const auto connection : well.getConnections()) {
if (connection.state() == Connection::State::OPEN) {
originalConnectionIndex_.push_back(all_perf);
}
++all_perf;
}
assert(originalConnectionIndex_.size() == perf_data.size());
}
// initialization of the completions mapping
initCompletions();
well_efficiency_factor_ = 1.0;
connectionRates_.resize(number_of_perforations_);
well_productivity_index_logger_counter_ = 0;
wellIsStopped_ = false;
if (well.getStatus() == Well::Status::STOP) {
wellIsStopped_ = true;
}
wsolvent_ = 0.0;
if (has_solvent && well.isInjector()) {
auto injectorType = well_ecl_.injectorType();
if (injectorType == InjectorType::GAS) {
wsolvent_ = well_ecl_.getSolventFraction();
}
}
}
template
void
WellInterface::
updatePerforatedCell(std::vector& is_cell_perforated)
{
for (int perf_idx = 0; perf_idx
void
WellInterface::
init(const PhaseUsage* phase_usage_arg,
const std::vector& /* depth_arg */,
const double gravity_arg,
const int /* num_cells */)
{
phase_usage_ = phase_usage_arg;
gravity_ = gravity_arg;
}
template
void
WellInterface::
initCompletions()
{
assert(completions_.empty() );
const WellConnections& connections = well_ecl_.getConnections();
const int num_conns = connections.size();
int num_active_connections = 0;
for (int c = 0; c < num_conns; ++c) {
if (connections[c].state() == Connection::State::OPEN) {
completions_[connections[c].complnum()].push_back(num_active_connections++);
}
}
assert(num_active_connections == number_of_perforations_);
}
template
void
WellInterface::
setVFPProperties(const VFPProperties* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
template
void
WellInterface::
setGuideRate(const GuideRate* guide_rate_arg)
{
guide_rate_ = guide_rate_arg;
}
template
const std::string&
WellInterface::
name() const
{
return well_ecl_.name();
}
template
bool
WellInterface::
isInjector() const
{
return well_ecl_.isInjector();
}
template
bool
WellInterface::
isProducer() const
{
return well_ecl_.isProducer();
}
template
int
WellInterface::
indexOfWell() const
{
return index_of_well_;
}
template
bool
WellInterface::
getAllowCrossFlow() const
{
return well_ecl_.getAllowCrossFlow();
}
template
void
WellInterface::
setWellEfficiencyFactor(const double efficiency_factor)
{
well_efficiency_factor_ = efficiency_factor;
}
template
const Well&
WellInterface::
wellEcl() const
{
return well_ecl_;
}
template
const PhaseUsage&
WellInterface::
phaseUsage() const
{
assert(phase_usage_);
return *phase_usage_;
}
template
int
WellInterface::
flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const auto& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// for other phases return the index
return phaseIdx;
}
template
int
WellInterface::
ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const
{
const auto& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx)
return pu.phase_pos[Water];
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == compIdx)
return pu.phase_pos[Oil];
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == compIdx)
return pu.phase_pos[Gas];
// for other phases return the index
return compIdx;
}
template
double
WellInterface::
wsolvent() const
{
return wsolvent_;
}
template
void
WellInterface::
setWsolvent(const double wsolvent)
{
wsolvent_ = wsolvent;
}
template
double
WellInterface::
wpolymer() const
{
if (!has_polymer) {
return 0.0;
}
auto injectorType = well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellPolymerProperties polymer = well_ecl_.getPolymerProperties();
const double polymer_injection_concentration = polymer.m_polymerConcentration;
return polymer_injection_concentration;
} else {
// Not a water injection well => no polymer.
return 0.0;
}
}
template
double
WellInterface::
wfoam() const
{
if (!has_foam) {
return 0.0;
}
auto injectorType = well_ecl_.injectorType();
if (injectorType == InjectorType::GAS) {
WellFoamProperties fprop = well_ecl_.getFoamProperties();
return fprop.m_foamConcentration;
} else {
// Not a gas injection well => no foam.
return 0.0;
}
}
template
double
WellInterface::
wsalt() const
{
if (!has_brine) {
return 0.0;
}
auto injectorType = well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellBrineProperties fprop = well_ecl_.getBrineProperties();
return fprop.m_saltConcentration;
} else {
// Not a water injection well => no salt (?).
return 0.0;
}
}
template
bool
WellInterface::
wellHasTHPConstraints(const SummaryState& summaryState) const
{
if (well_ecl_.isInjector()) {
const auto controls = well_ecl_.injectionControls(summaryState);
if (controls.hasControl(Well::InjectorCMode::THP))
return true;
}
if (well_ecl_.isProducer( )) {
const auto controls = well_ecl_.productionControls(summaryState);
if (controls.hasControl(Well::ProducerCMode::THP))
return true;
}
return false;
}
template
double
WellInterface::
mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
{
if (well_ecl_.isInjector()) {
const auto& controls = well_ecl_.injectionControls(summaryState);
return controls.bhp_limit;
}
if (well_ecl_.isProducer( )) {
const auto& controls = well_ecl_.productionControls(summaryState);
return controls.bhp_limit;
}
return 0.0;
}
template
double
WellInterface::
getTHPConstraint(const SummaryState& summaryState) const
{
if (well_ecl_.isInjector()) {
const auto& controls = well_ecl_.injectionControls(summaryState);
return controls.thp_limit;
}
if (well_ecl_.isProducer( )) {
const auto& controls = well_ecl_.productionControls(summaryState);
return controls.thp_limit;
}
return 0.0;
}
template
bool
WellInterface::
updateWellControl(const Simulator& ebos_simulator,
const IndividualOrGroup iog,
WellState& well_state,
Opm::DeferredLogger& deferred_logger) /* const */
{
if (this->wellIsStopped()) {
return false;
}
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const auto& schedule = ebos_simulator.vanguard().schedule();
const auto& well = well_ecl_;
std::string from;
if (well.isInjector()) {
from = Well::InjectorCMode2String(well_state.currentInjectionControls()[index_of_well_]);
} else {
from = Well::ProducerCMode2String(well_state.currentProductionControls()[index_of_well_]);
}
bool changed = false;
if (iog == IndividualOrGroup::Individual) {
changed = checkIndividualConstraints(well_state, schedule, summaryState, deferred_logger);
} else if (iog == IndividualOrGroup::Group) {
changed = checkGroupConstraints(well_state, schedule, summaryState, deferred_logger);
} else {
assert(iog == IndividualOrGroup::Both);
changed = checkConstraints(well_state, schedule, summaryState, deferred_logger);
}
auto cc = Dune::MPIHelper::getCollectiveCommunication();
// checking whether control changed
if (changed) {
std::string to;
if (well.isInjector()) {
to = Well::InjectorCMode2String(well_state.currentInjectionControls()[index_of_well_]);
} else {
to = Well::ProducerCMode2String(well_state.currentProductionControls()[index_of_well_]);
}
std::ostringstream ss;
ss << " Switching control mode for well " << name()
<< " from " << from
<< " to " << to;
if (cc.size() > 1) {
ss << " on rank " << cc.rank();
}
deferred_logger.info(ss.str());
updateWellStateWithTarget(ebos_simulator, well_state, deferred_logger);
updatePrimaryVariables(well_state, deferred_logger);
}
return changed;
}
template
bool
WellInterface::
underPredictionMode() const
{
return well_ecl_.predictionMode();
}
template
bool
WellInterface::
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger) const
{
const Opm::PhaseUsage& pu = phaseUsage();
const int np = number_of_phases_;
if (econ_production_limits.onMinOilRate()) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
template
void
WellInterface::
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
// function to calculate water cut based on rates
auto waterCut = [](const std::vector& rates,
const PhaseUsage& pu) {
const double oil_rate = rates[pu.phase_pos[Oil]];
const double water_rate = rates[pu.phase_pos[Water]];
// both rate should be in the same direction
assert(oil_rate * water_rate >= 0.);
const double liquid_rate = oil_rate + water_rate;
if (liquid_rate != 0.) {
return (water_rate / liquid_rate);
} else {
return 0.;
}
};
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
assert(max_water_cut_limit > 0.);
const bool watercut_limit_violated = checkMaxRatioLimitWell(well_state, max_water_cut_limit, waterCut);
if (watercut_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(well_state, max_water_cut_limit, waterCut, report);
}
}
template
void
WellInterface::
checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
// function to calculate gor based on rates
auto gor = [](const std::vector& rates,
const PhaseUsage& pu) {
const double oil_rate = rates[pu.phase_pos[Oil]];
const double gas_rate = rates[pu.phase_pos[Gas]];
// both rate should be in the same direction
assert(oil_rate * gas_rate >= 0.);
double gas_oil_ratio = 0.;
if (oil_rate != 0.) {
gas_oil_ratio = gas_rate / oil_rate;
} else {
if (gas_rate != 0.) {
gas_oil_ratio = 1.e100; // big value to mark it as violated
} else {
gas_oil_ratio = 0.0;
}
}
return gas_oil_ratio;
};
const double max_gor_limit = econ_production_limits.maxGasOilRatio();
assert(max_gor_limit > 0.);
const bool gor_limit_violated = checkMaxRatioLimitWell(well_state, max_gor_limit, gor);
if (gor_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(well_state, max_gor_limit, gor, report);
}
}
template
void
WellInterface::
checkMaxWGRLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
// function to calculate wgr based on rates
auto wgr = [](const std::vector& rates,
const PhaseUsage& pu) {
const double water_rate = rates[pu.phase_pos[Water]];
const double gas_rate = rates[pu.phase_pos[Gas]];
// both rate should be in the same direction
assert(water_rate * gas_rate >= 0.);
double water_gas_ratio = 0.;
if (gas_rate != 0.) {
water_gas_ratio = water_rate / gas_rate;
} else {
if (water_rate != 0.) {
water_gas_ratio = 1.e100; // big value to mark it as violated
} else {
water_gas_ratio = 0.0;
}
}
return water_gas_ratio;
};
const double max_wgr_limit = econ_production_limits.maxWaterGasRatio();
assert(max_wgr_limit > 0.);
const bool wgr_limit_violated = checkMaxRatioLimitWell(well_state, max_wgr_limit, wgr);
if (wgr_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(well_state, max_wgr_limit, wgr, report);
}
}
template
void
WellInterface::
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report,
Opm::DeferredLogger& deferred_logger) const
{
// TODO: not sure how to define the worst-offending completion when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending completion separately.
// Among the worst-offending completions, we use the one has the biggest violation
// extent.
if (econ_production_limits.onMaxWaterCut()) {
checkMaxWaterCutLimit(econ_production_limits, well_state, report);
}
if (econ_production_limits.onMaxGasOilRatio()) {
checkMaxGORLimit(econ_production_limits, well_state, report);
}
if (econ_production_limits.onMaxWaterGasRatio()) {
checkMaxWGRLimit(econ_production_limits, well_state, report);
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (report.ratio_limit_violated) {
assert(report.worst_offending_completion != INVALIDCOMPLETION);
assert(report.violation_extent > 1.);
}
}
template
template
bool
WellInterface::
checkMaxRatioLimitWell(const WellState& well_state,
const double max_ratio_limit,
const RatioFunc& ratioFunc) const
{
const int np = number_of_phases_;
std::vector well_rates(np, 0.0);
for (int p = 0; p < np; ++p) {
well_rates[p] = well_state.wellRates()[index_of_well_ * np + p];
}
const double well_ratio = ratioFunc(well_rates, phaseUsage());
return (well_ratio > max_ratio_limit);
}
template
template
void
WellInterface::
checkMaxRatioLimitCompletions(const WellState& well_state,
const double max_ratio_limit,
const RatioFunc& ratioFunc,
RatioLimitCheckReport& report) const
{
int worst_offending_completion = INVALIDCOMPLETION;
// the maximum water cut value of the completions
// it is used to identify the most offending completion
double max_ratio_completion = 0;
// look for the worst_offending_completion
for (const auto& completion : completions_) {
const int np = number_of_phases_;
std::vector completion_rates(np, 0.0);
// looping through the connections associated with the completion
const std::vector& conns = completion.second;
for (const int c : conns) {
const int index_con = c + first_perf_;
for (int p = 0; p < np; ++p) {
const double connection_rate = well_state.perfPhaseRates()[index_con * np + p];
completion_rates[p] += connection_rate;
}
} // end of for (const int c : conns)
const double ratio_completion = ratioFunc(completion_rates, phaseUsage());
if (ratio_completion > max_ratio_completion) {
worst_offending_completion = completion.first;
max_ratio_completion = ratio_completion;
}
} // end of for (const auto& completion : completions_)
assert(max_ratio_completion > max_ratio_limit);
assert(worst_offending_completion != INVALIDCOMPLETION);
const double violation_extent = max_ratio_completion / max_ratio_limit;
assert(violation_extent > 1.0);
if (violation_extent > report.violation_extent) {
report.worst_offending_completion = worst_offending_completion;
report.violation_extent = violation_extent;
}
}
template
void
WellInterface::
updateWellTestState(const WellState& well_state,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState,
Opm::DeferredLogger& deferred_logger) const
{
// currently, we only updateWellTestState for producers
if (this->isInjector()) {
return;
}
// Based on current understanding, only under prediction mode, we need to shut well due to various
// reasons or limits. With more knowlage or testing cases later, this might need to be corrected.
if (!underPredictionMode() ) {
return;
}
// updating well test state based on physical (THP/BHP) limits.
updateWellTestStatePhysical(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
// updating well test state based on Economic limits.
updateWellTestStateEconomic(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
// TODO: well can be shut/closed due to other reasons
}
template
void
WellInterface::
updateWellTestStatePhysical(const WellState& /* well_state */,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
Opm::DeferredLogger& deferred_logger) const
{
if (!isOperable() || wellIsStopped_) {
if (well_test_state.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC) ||
well_test_state.hasWellClosed(name(), WellTestConfig::Reason::PHYSICAL) ) {
// Already closed, do nothing.
} else {
well_test_state.closeWell(name(), WellTestConfig::Reason::PHYSICAL, simulation_time);
if (write_message_to_opmlog) {
const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped";
const std::string msg = "Well " + name()
+ " will be " + action + " as it can not operate under current reservoir conditions.";
deferred_logger.info(msg);
}
}
}
}
template
void
WellInterface::
updateWellTestStateEconomic(const WellState& well_state,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
Opm::DeferredLogger& deferred_logger) const
{
if (wellIsStopped_)
return;
const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits();
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
return;
}
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
// for the moment, we only handle rate limits, not handling potential limits
// the potential limits should not be difficult to add
const auto& quantity_limit = econ_production_limits.quantityLimit();
if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN) {
const std::string msg = std::string("POTN limit for well ") + name() + std::string(" is not supported for the moment. \n")
+ std::string("All the limits will be evaluated based on RATE. ");
deferred_logger.warning("NOT_SUPPORTING_POTN", msg);
}
if (econ_production_limits.onAnyRateLimit()) {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, deferred_logger);
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits")
+ std::string("is not supported yet \n")
+ std::string("the program will keep running after ") + name()
+ std::string(" is closed");
deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_.getAutomaticShutIn()) {
const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit");
deferred_logger.info(msg);
}
}
// the well is closed, not need to check other limits
return;
}
if ( !econ_production_limits.onAnyRatioLimit() ) {
// there is no need to check the ratio limits
return;
}
// checking for ratio related limits, mostly all kinds of ratio.
RatioLimitCheckReport ratio_report;
checkRatioEconLimits(econ_production_limits, well_state, ratio_report, deferred_logger);
if (ratio_report.ratio_limit_violated) {
const auto workover = econ_production_limits.workover();
switch (workover) {
case WellEconProductionLimits::EconWorkover::CON:
{
const int worst_offending_completion = ratio_report.worst_offending_completion;
well_test_state.addClosedCompletion(name(), worst_offending_completion, simulation_time);
if (write_message_to_opmlog) {
if (worst_offending_completion < 0) {
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
deferred_logger.info(msg);
}
}
bool allCompletionsClosed = true;
const auto& connections = well_ecl_.getConnections();
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN
&& !well_test_state.hasCompletion(name(), connection.complnum())) {
allCompletionsClosed = false;
}
}
if (allCompletionsClosed) {
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_.getAutomaticShutIn()) {
const std::string msg = name() + std::string(" will be shut due to last completion closed");
deferred_logger.info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to last completion closed");
deferred_logger.info(msg);
}
}
}
break;
}
case WellEconProductionLimits::EconWorkover::WELL:
{
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_.getAutomaticShutIn()) {
// tell the control that the well is closed
const std::string msg = name() + std::string(" will be shut due to ratio economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to ratio economic limit");
deferred_logger.info(msg);
}
}
break;
}
case WellEconProductionLimits::EconWorkover::NONE:
break;
default:
{
deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE",
"not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) );
}
}
}
}
template
void
WellInterface::
wellTesting(const Simulator& simulator, const std::vector& B_avg,
const double simulation_time, const int report_step,
const WellTestConfig::Reason testing_reason,
/* const */ WellState& well_state,
WellTestState& well_test_state,
Opm::DeferredLogger& deferred_logger)
{
if (testing_reason == WellTestConfig::Reason::PHYSICAL) {
wellTestingPhysical(simulator, B_avg, simulation_time, report_step,
well_state, well_test_state, deferred_logger);
}
if (testing_reason == WellTestConfig::Reason::ECONOMIC) {
wellTestingEconomic(simulator, B_avg, simulation_time,
well_state, well_test_state, deferred_logger);
}
}
template
void
WellInterface::
wellTestingEconomic(const Simulator& simulator, const std::vector& B_avg,
const double simulation_time, const WellState& well_state,
WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger)
{
deferred_logger.info(" well " + name() + " is being tested for economic limits");
WellState well_state_copy = well_state;
updateWellStateWithTarget(simulator, well_state_copy, deferred_logger);
calculateExplicitQuantities(simulator, well_state_copy, deferred_logger);
updatePrimaryVariables(well_state_copy, deferred_logger);
initPrimaryVariablesEvaluation();
WellTestState welltest_state_temp;
bool testWell = true;
// if a well is closed because all completions are closed, we need to check each completion
// individually. We first open all completions, then we close one by one by calling updateWellTestState
// untill the number of closed completions do not increase anymore.
while (testWell) {
const size_t original_number_closed_completions = welltest_state_temp.sizeCompletions();
solveWellForTesting(simulator, well_state_copy, B_avg, deferred_logger);
updateWellTestState(well_state_copy, simulation_time, /*writeMessageToOPMLog=*/ false, welltest_state_temp, deferred_logger);
closeCompletions(welltest_state_temp);
// Stop testing if the well is closed or shut due to all completions shut
// Also check if number of completions has increased. If the number of closed completions do not increased
// we stop the testing.
// TODO: it can be tricky here, if the well is shut/closed due to other reasons
if ( welltest_state_temp.sizeWells() > 0 ||
(original_number_closed_completions == welltest_state_temp.sizeCompletions()) ) {
testWell = false; // this terminates the while loop
}
}
// update wellTestState if the well test succeeds
if (!welltest_state_temp.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC)) {
welltest_state.openWell(name(), WellTestConfig::Reason::ECONOMIC);
const std::string msg = std::string("well ") + name() + std::string(" is re-opened through ECONOMIC testing");
deferred_logger.info(msg);
// also reopen completions
for (auto& completion : well_ecl_.getCompletions()) {
if (!welltest_state_temp.hasCompletion(name(), completion.first)) {
welltest_state.dropCompletion(name(), completion.first);
}
}
}
}
template
void
WellInterface::
computeRepRadiusPerfLength(const Grid& grid,
const std::vector& cartesian_to_compressed,
Opm::DeferredLogger& deferred_logger
)
{
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
const int nperf = number_of_perforations_;
perf_rep_radius_.clear();
perf_length_.clear();
bore_diameters_.clear();
perf_rep_radius_.reserve(nperf);
perf_length_.reserve(nperf);
bore_diameters_.reserve(nperf);
// COMPDAT handling
const auto& connectionSet = well_ecl_.getConnections();
for (size_t c=0; c cubical =
wellhelpers::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
double re; // area equivalent radius of the grid block
double perf_length; // the length of the well perforation
switch (connection.dir()) {
case Opm::Connection::Direction::X:
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
perf_length = cubical[0];
break;
case Opm::Connection::Direction::Y:
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
perf_length = cubical[1];
break;
case Opm::Connection::Direction::Z:
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
perf_length = cubical[2];
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, " Dirtecion of well is not supported ", deferred_logger);
}
const double repR = std::sqrt(re * radius);
perf_rep_radius_.push_back(repR);
perf_length_.push_back(perf_length);
bore_diameters_.push_back(2. * radius);
}
}
}
}
template
double
WellInterface::scalingFactor(const int phaseIdx) const
{
const auto& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return 0.01;
if (has_solvent && phaseIdx == contiSolventEqIdx )
return 0.01;
// we should not come this far
assert(false);
return 1.0;
}
template
bool
WellInterface::isVFPActive(Opm::DeferredLogger& deferred_logger) const
{
// since the well_controls only handles the VFP number when THP constraint/target is there.
// we need to get the table number through the parser, in case THP constraint/target is not there.
// When THP control/limit is not active, if available VFP table is provided, we will still need to
// update THP value. However, it will only used for output purpose.
if (isProducer()) { // producer
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getProd()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specfied,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
} else { // injector
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getInj()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specfied,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
}
}
template
bool
WellInterface::
solveWellEqUntilConverged(const Simulator& ebosSimulator,
const std::vector& B_avg,
WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
const int max_iter = param_.max_welleq_iter_;
int it = 0;
const double dt = 1.0; //not used for the well tests
bool converged;
WellState well_state0 = well_state;
do {
assembleWellEq(ebosSimulator, B_avg, dt, well_state, deferred_logger);
auto report = getWellConvergence(well_state, B_avg, deferred_logger);
converged = report.converged();
if (converged) {
break;
}
++it;
solveEqAndUpdateWellState(well_state, deferred_logger);
// We don't allow for switching well controls while computing well potentials and testing wells
// updateWellControl(ebosSimulator, well_state, deferred_logger);
initPrimaryVariablesEvaluation();
} while (it < max_iter);
return converged;
}
template
void
WellInterface::calculateReservoirRates(WellState& well_state) const
{
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector surface_rates(np, 0.0);
const int well_rate_index = np * index_of_well_;
for (int p = 0; p < np; ++p) {
surface_rates[p] = well_state.wellRates()[well_rate_index + p];
}
std::vector voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
for (int p = 0; p < np; ++p) {
well_state.wellReservoirRates()[well_rate_index + p] = voidage_rates[p];
}
}
template
void
WellInterface::closeCompletions(WellTestState& wellTestState)
{
const auto& connections = well_ecl_.getConnections();
int perfIdx = 0;
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN) {
if (wellTestState.hasCompletion(name(), connection.complnum())) {
well_index_[perfIdx] = 0.0;
}
perfIdx++;
}
}
}
template
void
WellInterface::
solveWellForTesting(const Simulator& ebosSimulator, WellState& well_state,
const std::vector& B_avg,
Opm::DeferredLogger& deferred_logger)
{
// keep a copy of the original well state
const WellState well_state0 = well_state;
const bool converged = solveWellEqUntilConverged(ebosSimulator, B_avg, well_state, deferred_logger);
if (converged) {
deferred_logger.debug("WellTest: Well equation for well " + name() + " converged");
} else {
const int max_iter = param_.max_welleq_iter_;
deferred_logger.debug("WellTest: Well equation for well " +name() + " failed converging in "
+ std::to_string(max_iter) + " iterations");
well_state = well_state0;
}
}
template
void
WellInterface::scaleProductivityIndex(const int perfIdx, double& productivity_index, const bool new_well, Opm::DeferredLogger& deferred_logger)
{
const auto& connection = well_ecl_.getConnections()[originalConnectionIndex_[perfIdx]];
if (well_ecl_.getDrainageRadius() < 0) {
if (new_well && perfIdx == 0) {
deferred_logger.warning("PRODUCTIVITY_INDEX_WARNING", "Negative drainage radius not supported. The productivity index is set to zero");
}
productivity_index = 0.0;
return;
}
if (connection.r0() > well_ecl_.getDrainageRadius()) {
if (new_well && well_productivity_index_logger_counter_ < 1) {
deferred_logger.info("PRODUCTIVITY_INDEX_INFO", "The effective radius is larger than the well drainage radius for well " + name() +
" They are set to equal in the well productivity index calculations");
well_productivity_index_logger_counter_++;
}
return;
}
// For zero drainage radius the productivity index is just the transmissibility times the mobility
if (well_ecl_.getDrainageRadius() == 0) {
return;
}
// Scale the productivity index to account for the drainage radius.
// Assumes steady radial flow only valied for horizontal wells
productivity_index *=
(std::log(connection.r0() / connection.rw()) + connection.skinFactor()) /
(std::log(well_ecl_.getDrainageRadius() / connection.rw()) + connection.skinFactor());
}
template
void
WellInterface::addCellRates(RateVector& rates, int cellIdx) const
{
for (int perfIdx = 0; perfIdx < number_of_perforations_; ++perfIdx) {
if (cells()[perfIdx] == cellIdx) {
for (int i = 0; i < RateVector::dimension; ++i) {
rates[i] += connectionRates_[perfIdx][i];
}
}
}
}
template
typename WellInterface::Scalar
WellInterface::volumetricSurfaceRateForConnection(int cellIdx, int phaseIdx) const {
for (int perfIdx = 0; perfIdx < number_of_perforations_; ++perfIdx) {
if (cells()[perfIdx] == cellIdx) {
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
return connectionRates_[perfIdx][activeCompIdx].value();
}
}
// this is not thread safe
OPM_THROW(std::invalid_argument, "The well with name " + name()
+ " does not perforate cell " + std::to_string(cellIdx));
return 0.0;
}
template
bool
WellInterface::
isOperable() const {
return operability_status_.isOperable();
}
template
bool
WellInterface::checkConstraints(WellState& well_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const bool ind_broken = checkIndividualConstraints(well_state, schedule, summaryState, deferred_logger);
if (ind_broken) {
return true;
} else {
return checkGroupConstraints(well_state, schedule, summaryState, deferred_logger);
}
}
template
bool
WellInterface::checkIndividualConstraints(WellState& well_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const auto& well = well_ecl_;
const PhaseUsage& pu = phaseUsage();
const int well_index = index_of_well_;
const auto wellrate_index = well_index * pu.num_phases;
if (well.isInjector()) {
const auto controls = well.injectionControls(summaryState);
Opm::Well::InjectorCMode& currentControl = well_state.currentInjectionControls()[well_index];
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
{
const auto& bhp = controls.bhp_limit;
double current_bhp = well_state.bhp()[well_index];
if (bhp < current_bhp) {
currentControl = Well::InjectorCMode::BHP;
return true;
}
}
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
{
InjectorType injectorType = controls.injector_type;
double current_rate = 0.0;
switch (injectorType) {
case InjectorType::WATER:
{
current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
break;
}
case InjectorType::OIL:
{
current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
break;
}
case InjectorType::GAS:
{
current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
if (controls.surface_rate < current_rate) {
currentControl = Well::InjectorCMode::RATE;
return true;
}
}
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
{
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.reservoir_rate < current_rate) {
currentControl = Well::InjectorCMode::RESV;
return true;
}
}
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
{
const auto& thp = controls.thp_limit;
double current_thp = well_state.thp()[well_index];
if (thp < current_thp) {
currentControl = Well::InjectorCMode::THP;
return true;
}
}
}
if (well.isProducer( )) {
const auto controls = well.productionControls(summaryState);
Well::ProducerCMode& currentControl = well_state.currentProductionControls()[well_index];
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP )
{
const double bhp = controls.bhp_limit;
double current_bhp = well_state.bhp()[well_index];
if (bhp > current_bhp) {
currentControl = Well::ProducerCMode::BHP;
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
if (controls.oil_rate < current_rate ) {
currentControl = Well::ProducerCMode::ORAT;
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT ) {
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
if (controls.water_rate < current_rate ) {
currentControl = Well::ProducerCMode::WRAT;
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT ) {
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.gas_rate < current_rate ) {
currentControl = Well::ProducerCMode::GRAT;
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
current_rate -= well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
if (controls.liquid_rate < current_rate ) {
currentControl = Well::ProducerCMode::LRAT;
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV ) {
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.prediction_mode && controls.resv_rate > current_rate) {
currentControl = Well::ProducerCMode::RESV;
return true;
}
if (!controls.prediction_mode) {
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector surface_rates(np, 0.0);
if( pu.phase_used[BlackoilPhases::Aqua] )
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
if( pu.phase_used[BlackoilPhases::Liquid] )
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
if( pu.phase_used[BlackoilPhases::Vapour] )
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
std::vector voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
double resv_rate = 0.0;
for (int p = 0; p < np; ++p) {
resv_rate += voidage_rates[p];
}
if (resv_rate < current_rate) {
currentControl = Well::ProducerCMode::RESV;
return true;
}
}
}
if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP)
{
const auto& thp = controls.thp_limit;
double current_thp = well_state.thp()[well_index];
if (thp > current_thp) {
currentControl = Well::ProducerCMode::THP;
return true;
}
}
}
return false;
}
template
bool
WellInterface::checkGroupConstraints(WellState& well_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const auto& well = well_ecl_;
const int well_index = index_of_well_;
if (well.isInjector()) {
const auto controls = well.injectionControls(summaryState);
Opm::Well::InjectorCMode& currentControl = well_state.currentInjectionControls()[well_index];
if (currentControl != Well::InjectorCMode::GRUP) {
// This checks only the first encountered group limit,
// in theory there could be several, and then we should
// test all but the one currently applied. At that point,
// this if-statement should be removed and we should always
// check, skipping over only the single group parent whose
// control is the active one for the well (if any).
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
const double efficiencyFactor = well.getEfficiencyFactor();
const std::pair group_constraint = checkGroupConstraintsInj(
group, well_state, efficiencyFactor, schedule, summaryState, deferred_logger);
// If a group constraint was broken, we set the current well control to
// be GRUP.
if (group_constraint.first) {
well_state.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::GRUP;
const int np = well_state.numPhases();
for (int p = 0; p group_constraint = checkGroupConstraintsProd(
group, well_state, efficiencyFactor, schedule, summaryState, deferred_logger);
// If a group constraint was broken, we set the current well control to
// be GRUP.
if (group_constraint.first) {
well_state.currentProductionControls()[index_of_well_] = Well::ProducerCMode::GRUP;
const int np = well_state.numPhases();
for (int p = 0; p
std::pair
WellInterface::checkGroupConstraintsInj(const Group& group,
const WellState& well_state,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
// Translate injector type from control to Phase.
const auto& well_controls = well_ecl_.injectionControls(summaryState);
auto injectorType = well_controls.injector_type;
Phase injectionPhase;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injector " + name());
}
// Call check for the well's injection phase.
return wellGroupHelpers::checkGroupConstraintsInj(name(),
well_ecl_.groupName(),
group,
well_state,
current_step_,
guide_rate_,
well_state.wellRates().data() + index_of_well_ * phaseUsage().num_phases,
injectionPhase,
phaseUsage(),
efficiencyFactor,
schedule,
summaryState,
rateConverter_,
pvtRegionIdx_,
deferred_logger);
}
template
std::pair
WellInterface::checkGroupConstraintsProd(const Group& group,
const WellState& well_state,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
return wellGroupHelpers::checkGroupConstraintsProd(name(),
well_ecl_.groupName(),
group,
well_state,
current_step_,
guide_rate_,
well_state.wellRates().data() + index_of_well_ * phaseUsage().num_phases,
phaseUsage(),
efficiencyFactor,
schedule,
summaryState,
rateConverter_,
pvtRegionIdx_,
deferred_logger);
}
template
template
void
WellInterface::assembleControlEqInj(const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& controls,
const EvalWell& bhp,
const EvalWell& injection_rate,
BhpFromThpFunc bhp_from_thp,
EvalWell& control_eq,
Opm::DeferredLogger& deferred_logger)
{
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[index_of_well_];
const InjectorType injectorType = controls.injector_type;
const auto& pu = phaseUsage();
const double efficiencyFactor = well_ecl_.getEfficiencyFactor();
switch (current) {
case Well::InjectorCMode::RATE: {
control_eq = injection_rate - controls.surface_rate;
break;
}
case Well::InjectorCMode::RESV: {
std::vector convert_coeff(number_of_phases_, 1.0);
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
double coeff = 1.0;
switch (injectorType) {
case InjectorType::WATER: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]];
break;
}
case InjectorType::OIL: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]];
break;
}
case InjectorType::GAS: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well_ecl_.name());
}
control_eq = coeff * injection_rate - controls.reservoir_rate;
break;
}
case Well::InjectorCMode::THP: {
control_eq = bhp - bhp_from_thp();
break;
}
case Well::InjectorCMode::BHP: {
control_eq = bhp - controls.bhp_limit;
break;
}
case Well::InjectorCMode::GRUP: {
assert(well_ecl_.isAvailableForGroupControl());
const auto& group = schedule.getGroup(well_ecl_.groupName(), current_step_);
getGroupInjectionControl(group,
well_state,
schedule,
summaryState,
injectorType,
bhp,
injection_rate,
control_eq,
efficiencyFactor);
break;
}
case Well::InjectorCMode::CMODE_UNDEFINED: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger);
}
}
}
template
template
void
WellInterface::assembleControlEqProd(const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const Well::ProductionControls& controls,
const EvalWell& bhp,
const std::vector& rates, // Always 3 canonical rates.
BhpFromThpFunc bhp_from_thp,
EvalWell& control_eq,
Opm::DeferredLogger& deferred_logger)
{
const Well::ProducerCMode& current = well_state.currentProductionControls()[index_of_well_];
const auto& pu = phaseUsage();
const double efficiencyFactor = well_ecl_.getEfficiencyFactor();
switch (current) {
case Well::ProducerCMode::ORAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const EvalWell rate = -rates[pu.phase_pos[BlackoilPhases::Liquid]];
control_eq = rate - controls.oil_rate;
break;
}
case Well::ProducerCMode::WRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const EvalWell rate = -rates[pu.phase_pos[BlackoilPhases::Aqua]];
control_eq = rate - controls.water_rate;
break;
}
case Well::ProducerCMode::GRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const EvalWell rate = -rates[pu.phase_pos[BlackoilPhases::Vapour]];
control_eq = rate - controls.gas_rate;
break;
}
case Well::ProducerCMode::LRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -rates[pu.phase_pos[BlackoilPhases::Aqua]] - rates[pu.phase_pos[BlackoilPhases::Liquid]];
control_eq = rate - controls.liquid_rate;
break;
}
case Well::ProducerCMode::CRAT: {
OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << name(), deferred_logger);
}
case Well::ProducerCMode::RESV: {
auto total_rate = rates[0]; // To get the correct type only.
total_rate = 0.0;
std::vector convert_coeff(number_of_phases_, 1.0);
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
for (int phase = 0; phase < 3; ++phase) {
if (pu.phase_used[phase]) {
const int pos = pu.phase_pos[phase];
total_rate -= rates[pos] * convert_coeff[pos];
}
}
if (controls.prediction_mode) {
control_eq = total_rate - controls.resv_rate;
} else {
std::vector hrates(number_of_phases_, 0.);
const PhaseUsage& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
hrates[pu.phase_pos[Water]] = controls.water_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
}
std::vector hrates_resv(number_of_phases_, 0.);
rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, pvtRegionIdx_, hrates, hrates_resv);
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
control_eq = total_rate - target;
}
break;
}
case Well::ProducerCMode::BHP: {
control_eq = bhp - controls.bhp_limit;
break;
}
case Well::ProducerCMode::THP: {
control_eq = bhp - bhp_from_thp();
break;
}
case Well::ProducerCMode::GRUP: {
assert(well_ecl_.isAvailableForGroupControl());
const auto& group = schedule.getGroup(well_ecl_.groupName(), current_step_);
// Annoying thing: the rates passed to this function are
// always of size 3 and in canonical (for PhaseUsage)
// order. This is what is needed for VFP calculations if
// they are required (THP controlled well). But for the
// group production control things we must pass only the
// active phases' rates.
std::vector active_rates(pu.num_phases);
for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) {
if (pu.phase_used[canonical_phase]) {
active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase];
}
}
getGroupProductionControl(group, well_state, schedule, summaryState, bhp, active_rates, control_eq, efficiencyFactor);
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger);
}
case Well::ProducerCMode::NONE: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger);
}
}
}
template
template
void
WellInterface::getGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
const EvalWell& bhp,
const EvalWell& injection_rate,
EvalWell& control_eq,
double efficiencyFactor)
{
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.injectionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
const auto& well = well_ecl_;
const auto pu = phaseUsage();
int phasePos = -1;
Well::GuideRateTarget wellTarget;
Phase injectionPhase;
switch (injectorType) {
case InjectorType::WATER:
{
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
wellTarget = Well::GuideRateTarget::WAT;
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
wellTarget = Well::GuideRateTarget::OIL;
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
wellTarget = Well::GuideRateTarget::GAS;
injectionPhase = Phase::GAS;
break;
}
default:
// Should not be here.
assert(false);
}
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor);
return;
}
assert(group.hasInjectionControl(injectionPhase));
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
const std::vector& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
double groupTargetReduction = groupInjectionReductions[phasePos];
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(),
group.name(),
schedule,
well_state,
current_step_,
guide_rate_,
GuideRateModel::convert_target(wellTarget),
pu,
injectionPhase,
false);
switch (currentGroupControl) {
case Group::InjectionCMode::NONE:
{
// The NONE case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::RATE:
{
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::RESV:
{
std::vector convert_coeff(number_of_phases_, 1.0);
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::REIN:
{
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::VREP:
{
std::vector convert_coeff(number_of_phases_, 1.0);
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
double injReduction = 0.0;
std::vector groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
if (groupcontrols.phase != Phase::WATER)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
if (groupcontrols.phase != Phase::OIL)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
if (groupcontrols.phase != Phase::GAS)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
voidageRate -= injReduction;
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::FLD:
{
// The FLD case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::SALE:
{
// only for gas injectors
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
if (schedule.gConSump(current_step_).has(group.name())) {
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
if (pu.phase_used[BlackoilPhases::Vapour]) {
inj_rate += gconsump.import_rate;
inj_rate -= gconsump.consumption_rate;
}
}
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
inj_rate -= gconsale.sales_target;
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
// default:
// OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
}
}
template
template
void
WellInterface::getGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector& rates,
EvalWell& control_eq,
double efficiencyFactor)
{
const auto& well = well_ecl_;
const auto pu = phaseUsage();
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupProductionControl(parent, well_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor);
return;
}
}
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a vallied control
const auto& controls = well.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
wellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, rateConverter_, pvtRegionIdx_);
wellGroupHelpers::FractionCalculator fcalc(schedule, well_state, current_step_, guide_rate_, tcalc.guideTargetMode(), pu);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, "");
};
auto localReduction = [&](const std::string& group_name) {
const std::vector& groupTargetReductions = well_state.currentProductionGroupReductionRates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
const auto chain = wellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, current_step_);
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
target -= localReduction(chain[ii]);
target *= localFraction(chain[ii+1]);
}
const double target_rate = target / efficiencyFactor;
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
} // namespace Opm