/* Copyright (c) 2014 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include namespace Opm { AdaptiveSimulatorTimer:: AdaptiveSimulatorTimer( const SimulatorTimerInterface& timer, const double lastStepTaken, const double maxTimeStep ) : start_date_time_( timer.startDateTime() ) , start_time_( timer.simulationTimeElapsed() ) , total_time_( start_time_ + timer.currentStepLength() ) , report_step_( timer.reportStepNum() ) , max_time_step_( maxTimeStep ) , current_time_( start_time_ ) , dt_( 0.0 ) , current_step_( 0 ) , steps_() { // reserve memory for sub steps steps_.reserve( 10 ); // set appropriate value for dt_ provideTimeStepEstimate( lastStepTaken ); } AdaptiveSimulatorTimer& AdaptiveSimulatorTimer::operator++ () { ++current_step_; current_time_ += dt_; // store used time step sizes steps_.push_back( dt_ ); return *this; } void AdaptiveSimulatorTimer:: provideTimeStepEstimate( const double dt_estimate ) { double remaining = (total_time_ - current_time_); // apply max time step if it was set dt_ = std::min( dt_estimate, max_time_step_ ); if( remaining > 0 ) { // set new time step (depending on remaining time) if( 1.05 * dt_ > remaining ) { dt_ = remaining; // check max time step again and use half remaining if to large if( dt_ > max_time_step_ ) { dt_ = 0.5 * remaining; } return; } // check for half interval step to avoid very small step at the end // remaining *= 0.5; if( 1.5 * dt_ > remaining ) { dt_ = 0.5 * remaining; return; } } } int AdaptiveSimulatorTimer:: currentStepNum () const { return current_step_; } int AdaptiveSimulatorTimer:: reportStepNum () const { return report_step_; } double AdaptiveSimulatorTimer::currentStepLength () const { return dt_; } double AdaptiveSimulatorTimer::stepLengthTaken() const { assert( ! steps_.empty() ); return steps_.back(); } double AdaptiveSimulatorTimer::totalTime() const { return total_time_; } double AdaptiveSimulatorTimer::simulationTimeElapsed() const { return current_time_; } bool AdaptiveSimulatorTimer::done () const { return (current_time_ >= total_time_) ; } double AdaptiveSimulatorTimer::averageStepLength() const { const int size = steps_.size(); if( size == 0 ) return 0.0; const double sum = std::accumulate(steps_.begin(), steps_.end(), 0.0); return sum / double(size); } /// \brief return max step length used so far double AdaptiveSimulatorTimer::maxStepLength () const { if( steps_.size() == 0 ) return 0.0; return *(std::max_element( steps_.begin(), steps_.end() )); } /// \brief return min step length used so far double AdaptiveSimulatorTimer::minStepLength () const { if( steps_.size() == 0 ) return 0.0; return *(std::min_element( steps_.begin(), steps_.end() )); } /// \brief report start and end time as well as used steps so far void AdaptiveSimulatorTimer:: report(std::ostream& os) const { os << "Sub steps started at time = " << unit::convert::to( start_time_, unit::day ) << " (days)" << std::endl; for( size_t i=0; i AdaptiveSimulatorTimer::clone() const { return std::unique_ptr< SimulatorTimerInterface > (new AdaptiveSimulatorTimer( *this )); } } // namespace Opm