/*
Copyright (c) 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
AdaptiveSimulatorTimer::
AdaptiveSimulatorTimer( const SimulatorTimerInterface& timer,
const double lastStepTaken,
const double maxTimeStep )
: start_date_time_( timer.startDateTime() )
, start_time_( timer.simulationTimeElapsed() )
, total_time_( start_time_ + timer.currentStepLength() )
, report_step_( timer.reportStepNum() )
, max_time_step_( maxTimeStep )
, current_time_( start_time_ )
, dt_( 0.0 )
, current_step_( 0 )
, steps_()
{
// reserve memory for sub steps
steps_.reserve( 10 );
// set appropriate value for dt_
provideTimeStepEstimate( lastStepTaken );
}
AdaptiveSimulatorTimer& AdaptiveSimulatorTimer::operator++ ()
{
++current_step_;
current_time_ += dt_;
// store used time step sizes
steps_.push_back( dt_ );
return *this;
}
void AdaptiveSimulatorTimer::
provideTimeStepEstimate( const double dt_estimate )
{
double remaining = (total_time_ - current_time_);
// apply max time step if it was set
dt_ = std::min( dt_estimate, max_time_step_ );
if( remaining > 0 ) {
// set new time step (depending on remaining time)
if( 1.05 * dt_ > remaining ) {
dt_ = remaining;
// check max time step again and use half remaining if to large
if( dt_ > max_time_step_ ) {
dt_ = 0.5 * remaining;
}
return;
}
// check for half interval step to avoid very small step at the end
// remaining *= 0.5;
if( 1.5 * dt_ > remaining ) {
dt_ = 0.5 * remaining;
return;
}
}
}
int AdaptiveSimulatorTimer::
currentStepNum () const { return current_step_; }
int AdaptiveSimulatorTimer::
reportStepNum () const { return report_step_; }
double AdaptiveSimulatorTimer::currentStepLength () const
{
return dt_;
}
double AdaptiveSimulatorTimer::stepLengthTaken() const
{
assert( ! steps_.empty() );
return steps_.back();
}
double AdaptiveSimulatorTimer::totalTime() const { return total_time_; }
double AdaptiveSimulatorTimer::simulationTimeElapsed() const { return current_time_; }
bool AdaptiveSimulatorTimer::done () const { return (current_time_ >= total_time_) ; }
double AdaptiveSimulatorTimer::averageStepLength() const
{
const int size = steps_.size();
if( size == 0 ) return 0.0;
const double sum = std::accumulate(steps_.begin(), steps_.end(), 0.0);
return sum / double(size);
}
/// \brief return max step length used so far
double AdaptiveSimulatorTimer::maxStepLength () const
{
if( steps_.size() == 0 ) return 0.0;
return *(std::max_element( steps_.begin(), steps_.end() ));
}
/// \brief return min step length used so far
double AdaptiveSimulatorTimer::minStepLength () const
{
if( steps_.size() == 0 ) return 0.0;
return *(std::min_element( steps_.begin(), steps_.end() ));
}
/// \brief report start and end time as well as used steps so far
void AdaptiveSimulatorTimer::
report(std::ostream& os) const
{
os << "Sub steps started at time = " << unit::convert::to( start_time_, unit::day ) << " (days)" << std::endl;
for( size_t i=0; i
AdaptiveSimulatorTimer::clone() const
{
return std::unique_ptr< SimulatorTimerInterface > (new AdaptiveSimulatorTimer( *this ));
}
} // namespace Opm