/* Copyright 2021 Equinor ASA This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include namespace Opm { SingleWellState::SingleWellState(const std::string& name_, const ParallelWellInfo& pinfo, bool is_producer, double pressure_first_connection, const std::vector& perf_input, const PhaseUsage& pu_, double temp) : name(name_) , parallel_info(pinfo) , producer(is_producer) , pu(pu_) , temperature(temp) , well_potentials(pu_.num_phases) , productivity_index(pu_.num_phases) , implicit_ipr_a(pu_.num_phases) , implicit_ipr_b(pu_.num_phases) , surface_rates(pu_.num_phases) , reservoir_rates(pu_.num_phases) , prev_surface_rates(pu_.num_phases) , perf_data(perf_input.size(), pressure_first_connection, !is_producer, pu_.num_phases) , trivial_target(false) { for (std::size_t perf = 0; perf < perf_input.size(); perf++) { this->perf_data.cell_index[perf] = perf_input[perf].cell_index; this->perf_data.connection_transmissibility_factor[perf] = perf_input[perf].connection_transmissibility_factor; this->perf_data.connection_d_factor[perf] = perf_input[perf].connection_d_factor; this->perf_data.satnum_id[perf] = perf_input[perf].satnum_id; this->perf_data.ecl_index[perf] = perf_input[perf].ecl_index; } } SingleWellState SingleWellState::serializationTestObject(const ParallelWellInfo& pinfo) { SingleWellState result("testing", pinfo, true, 1.0, {}, PhaseUsage{}, 2.0); result.perf_data = PerfData::serializationTestObject(); return result; } void SingleWellState::init_timestep(const SingleWellState& other) { if (this->producer != other.producer) return; if (this->status == Well::Status::SHUT) return; if (other.status == Well::Status::SHUT) return; this->bhp = other.bhp; this->thp = other.thp; this->temperature = other.temperature; } void SingleWellState::shut() { this->bhp = 0; this->thp = 0; this->status = Well::Status::SHUT; std::fill(this->surface_rates.begin(), this->surface_rates.end(), 0); std::fill(this->prev_surface_rates.begin(), this->prev_surface_rates.end(), 0); std::fill(this->reservoir_rates.begin(), this->reservoir_rates.end(), 0); std::fill(this->productivity_index.begin(), this->productivity_index.end(), 0); std::fill(this->implicit_ipr_a.begin(), this->implicit_ipr_a.end(), 0); std::fill(this->implicit_ipr_b.begin(), this->implicit_ipr_b.end(), 0); auto& connpi = this->perf_data.prod_index; connpi.assign(connpi.size(), 0); } void SingleWellState::stop() { this->thp = 0; this->status = Well::Status::STOP; } void SingleWellState::open() { this->status = Well::Status::OPEN; } void SingleWellState::updateStatus(Well::Status new_status) { switch (new_status) { case Well::Status::OPEN: this->open(); break; case Well::Status::SHUT: this->shut(); break; case Well::Status::STOP: this->stop(); break; default: throw std::logic_error("Invalid well status"); } } void SingleWellState::reset_connection_factors(const std::vector& new_perf_data) { if (this->perf_data.size() != new_perf_data.size()) { throw std::invalid_argument { "Size mismatch for perforation data in well " + this->name }; } for (std::size_t conn_index = 0; conn_index < new_perf_data.size(); conn_index++) { if (this->perf_data.cell_index[conn_index] != static_cast(new_perf_data[conn_index].cell_index)) { throw std::invalid_argument { "Cell index mismatch in connection " + std::to_string(conn_index) + " of well " + this->name }; } if (this->perf_data.satnum_id[conn_index] != new_perf_data[conn_index].satnum_id) { throw std::invalid_argument { "Saturation function table mismatch in connection " + std::to_string(conn_index) + " of well " + this->name }; } this->perf_data.connection_transmissibility_factor[conn_index] = new_perf_data[conn_index].connection_transmissibility_factor; } } double SingleWellState::sum_connection_rates(const std::vector& connection_rates) const { return this->parallel_info.get().sumPerfValues(connection_rates.begin(), connection_rates.end()); } double SingleWellState::sum_brine_rates() const { return this->sum_connection_rates(this->perf_data.brine_rates); } double SingleWellState::sum_polymer_rates() const { return this->sum_connection_rates(this->perf_data.polymer_rates); } double SingleWellState::sum_solvent_rates() const { return this->sum_connection_rates(this->perf_data.solvent_rates); } double SingleWellState::sum_filtrate_rate() const { if (this->producer) return 0.; return this->sum_connection_rates(this->perf_data.filtrate_data.rates); } double SingleWellState::sum_filtrate_total() const { if (this->producer) return 0.; return this->sum_connection_rates(this->perf_data.filtrate_data.total); } void SingleWellState::update_producer_targets(const Well& ecl_well, const SummaryState& st) { const double bhp_safety_factor = 0.99; const auto& prod_controls = ecl_well.productionControls(st); auto cmode_is_bhp = (prod_controls.cmode == Well::ProducerCMode::BHP); auto bhp_limit = prod_controls.bhp_limit; if (ecl_well.getStatus() == Well::Status::STOP) { if (cmode_is_bhp) this->bhp = bhp_limit; else this->bhp = this->perf_data.pressure_first_connection; return; } switch (prod_controls.cmode) { case Well::ProducerCMode::ORAT: assert(this->pu.phase_used[BlackoilPhases::Liquid]); this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = -prod_controls.oil_rate; break; case Well::ProducerCMode::WRAT: assert(this->pu.phase_used[BlackoilPhases::Aqua]); this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = -prod_controls.water_rate; break; case Well::ProducerCMode::GRAT: assert(this->pu.phase_used[BlackoilPhases::Vapour]); this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = -prod_controls.gas_rate; break; case Well::ProducerCMode::GRUP: case Well::ProducerCMode::THP: case Well::ProducerCMode::BHP: if (this->pu.phase_used[BlackoilPhases::Liquid]) { this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = -1000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day; } if (this->pu.phase_used[BlackoilPhases::Aqua]) { this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = -1000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day; } if (this->pu.phase_used[BlackoilPhases::Vapour]){ this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = -100000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day; } break; default: // Keep zero init. break; } if (prod_controls.cmode == Well::ProducerCMode::THP) { this->thp = prod_controls.thp_limit; } if (cmode_is_bhp) this->bhp = bhp_limit; else this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor; } void SingleWellState::update_injector_targets(const Well& ecl_well, const SummaryState& st) { const double bhp_safety_factor = 1.01; const auto& inj_controls = ecl_well.injectionControls(st); if (inj_controls.hasControl(Well::InjectorCMode::THP)) this->thp = inj_controls.thp_limit; auto cmode_is_bhp = (inj_controls.cmode == Well::InjectorCMode::BHP); auto bhp_limit = inj_controls.bhp_limit; if (ecl_well.getStatus() == Well::Status::STOP) { if (cmode_is_bhp) this->bhp = bhp_limit; else this->bhp = this->perf_data.pressure_first_connection; return; } // we initialize all open wells with a rate to avoid singularities double inj_surf_rate = 10.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day; if (inj_controls.cmode == Well::InjectorCMode::RATE) { inj_surf_rate = inj_controls.surface_rate; } switch (inj_controls.injector_type) { case InjectorType::WATER: assert(pu.phase_used[BlackoilPhases::Aqua]); this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = inj_surf_rate; break; case InjectorType::GAS: assert(pu.phase_used[BlackoilPhases::Vapour]); this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = inj_surf_rate; break; case InjectorType::OIL: assert(pu.phase_used[BlackoilPhases::Liquid]); this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = inj_surf_rate; break; case InjectorType::MULTI: // Not currently handled, keep zero init. break; } if (cmode_is_bhp) this->bhp = bhp_limit; else this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor; } void SingleWellState::update_targets(const Well& ecl_well, const SummaryState& st) { if (this->producer) this->update_producer_targets(ecl_well, st); else this->update_injector_targets(ecl_well, st); } bool SingleWellState::operator==(const SingleWellState& rhs) const { return this->name == rhs.name && this->status == rhs.status && this->producer == rhs.producer && this->bhp == rhs.bhp && this->thp == rhs.thp && this->temperature == rhs.temperature && this->phase_mixing_rates == rhs.phase_mixing_rates && this->well_potentials == rhs.well_potentials && this->productivity_index == rhs.productivity_index && this->implicit_ipr_a == rhs.implicit_ipr_a && this->implicit_ipr_b == rhs.implicit_ipr_b && this->surface_rates == rhs.surface_rates && this->reservoir_rates == rhs.reservoir_rates && this->prev_surface_rates == rhs.prev_surface_rates && this->perf_data == rhs.perf_data && this->filtrate_conc == rhs.filtrate_conc && this->trivial_target == rhs.trivial_target && this->segments == rhs.segments && this->events == rhs.events && this->injection_cmode == rhs.injection_cmode && this->production_cmode == rhs.production_cmode; } }