/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#define OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
/// Class for handling the standard well model.
template
class StandardWellsDense {
public:
struct WellOps {
WellOps(const Wells* wells)
: w2p(),
p2w(),
well_cells()
{
if( wells )
{
w2p = Eigen::SparseMatrix(wells->well_connpos[ wells->number_of_wells ], wells->number_of_wells);
p2w = Eigen::SparseMatrix(wells->number_of_wells, wells->well_connpos[ wells->number_of_wells ]);
const int nw = wells->number_of_wells;
const int* const wpos = wells->well_connpos;
typedef Eigen::Triplet Tri;
std::vector scatter, gather;
scatter.reserve(wpos[nw]);
gather .reserve(wpos[nw]);
for (int w = 0, i = 0; w < nw; ++w) {
for (; i < wpos[ w + 1 ]; ++i) {
scatter.push_back(Tri(i, w, 1.0));
gather .push_back(Tri(w, i, 1.0));
}
}
w2p.setFromTriplets(scatter.begin(), scatter.end());
p2w.setFromTriplets(gather .begin(), gather .end());
well_cells.assign(wells->well_cells, wells->well_cells + wells->well_connpos[wells->number_of_wells]);
}
}
Eigen::SparseMatrix w2p; // well -> perf (scatter)
Eigen::SparseMatrix p2w; // perf -> well (gather)
std::vector well_cells; // the set of perforated cells
};
// --------- Types ---------
using ADB = AutoDiffBlock;
typedef DenseAd::Evaluation EvalWell;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
//typedef AutoDiffBlock ADB;
using Vector = ADB::V;
using V = ADB::V;
typedef ADB::M M;
typedef double Scalar;
typedef Dune::FieldVector VectorBlockType;
typedef Dune::FieldMatrix MatrixBlockType;
typedef Dune::BCRSMatrix Mat;
typedef Dune::BlockVector BVector;
// copied from BlackoilModelBase
// should put to somewhere better
using DataBlock = Eigen::Array;
// --------- Public methods ---------
StandardWellsDense(const Wells* wells_arg,
const ModelParameters& param,
const bool terminal_output,
const std::vector& pv)
: wells_active_(wells_arg!=nullptr)
, wells_(wells_arg)
, wops_(wells_arg)
, fluid_(nullptr)
, active_(nullptr)
, phase_condition_(nullptr)
, vfp_properties_(nullptr)
, well_perforation_densities_(Vector())
, well_perforation_pressure_diffs_(Vector())
, store_well_perforation_fluxes_(false)
, wellVariables_(wells_arg->number_of_wells * wells_arg->number_of_phases)
, F0_(wells_arg->number_of_wells * wells_arg->number_of_phases)
, param_(param)
, terminal_output_(terminal_output)
, pv_(pv)
//, resWell(wells_->number_of_wells)
//, duneD( Mat(2, 2, 3, 0.4, Mat::implicit))
//, duneB( Mat(300, 2, 6, 0.4, Mat::implicit))
//, duneC( Mat(2, 300, 6, 0.4, Mat::implicit))
{
}
template
IterationReport assemble(const Simulator& ebosSimulator,
const int iterationIdx,
const double dt,
WellState& well_state,
LinearisedBlackoilResidual& residual) {
resetWellControlFromState(well_state);
updateWellControls(well_state);
// Set the primary variables for the wells
setWellVariables(well_state);
if (iterationIdx == 0) {
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWells();
}
IterationReport iter_report = {false, false, 0, 0};
if ( ! wellsActive() ) {
return iter_report;
}
//wellModel().extractWellPerfProperties(state, rq_, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
iter_report = solveWellEq(ebosSimulator, dt, well_state);
}
std::vector cq_s;
int nw = wells_->number_of_wells;
int nc = numCells();
Mat duneD (nw, nw, 9, 0.4, Mat::implicit);
Mat duneB (nc, nw, 9, 0.4, Mat::implicit);
Mat duneC (nw, nc, 9, 0.4, Mat::implicit);
Mat duneA (nc, nc, 9, 0.4, Mat::implicit);
BVector rhs(nc);
BVector resWell(nw);
computeWellFluxDense(ebosSimulator, cq_s, 4, duneA, duneB, duneC, duneD, rhs, resWell, well_state);
addWellFluxEq(cq_s, dt, 4, residual, duneD, resWell);
//updatePerfPhaseRatesAndPressures(cq_s, well_state);
//addWellContributionToMassBalanceEq(cq_s,residual);
//std::cout << residual.well_flux_eq << std::endl;
duneA.compress();
duneB.compress();
duneC.compress();
duneD.compress();
//std::cout << "B" << std::endl;
//print(duneB);
//std::cout << "C" << std::endl;
//print(duneC);
//print(duneD);
// V resWellEigen = residual.well_flux_eq.value();
// const int np = numPhases();
// BVector resWell2(nw);
// for (int i = 0; i < nw; ++i){
// for( int p = 0; p < np; ++p ) {
// int idx = i + p * nw;
// resWell2[i][flowPhaseToEbosCompIdx(p)] = resWellEigen(idx);
// std::cout << resWell[i][flowPhaseToEbosCompIdx(p)] << " " << resWell2[i][flowPhaseToEbosCompIdx(p)]<< std::endl;
// }
// }
resWell_ = resWell;
rhs_ = rhs;
duneB_ = duneB;
duneC_ = duneC;
localInvert(duneD);
invDuneD_ = duneD;
duneA_ = duneA;
//std::cout << "duneA_" << std::endl;
//print(duneA_);
if (param_.compute_well_potentials_) {
//wellModel().computeWellPotentials(mob_perfcells, b_perfcells, state0, well_state);
}
return iter_report;
}
void localInvert(Mat& istlA) const {
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
//std::cout << (*col) << std::endl;
(*col).invert();
}
}
}
void print(Mat& istlA) const {
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
}
}
}
void matAdd( Mat& res, const Mat& A, const Mat& B ) const
{
matBinaryOp( res, A, B, true );
}
void matSubstract( Mat& res, const Mat& A, const Mat& B ) const
{
matBinaryOp( res, A, B, false );
}
void matBinaryOp( Mat& res, const Mat& A, const Mat& B, const bool add ) const
{
assert( A.N() == B.N() && A.M() == B.M() );
res.setSize( A.N(), A.M() );
res.setBuildMode( Mat::implicit );
const int avg_cols_per_row = 20;
const double overflow_fraction = 0.4;
res.setImplicitBuildModeParameters(avg_cols_per_row,overflow_fraction);
// res = A
for( auto rowit = A.begin(), rowEnd = A.end(); rowit != rowEnd; ++rowit )
{
const int rowIdx = rowit.index();
const auto colEnd = rowit->end();
for( auto colit = rowit->begin(); colit != colEnd; ++colit )
{
const int colIdx = colit.index();
res.entry( rowIdx, colIdx ) = (*colit);
}
}
// res += B
for( auto rowit = B.begin(), rowEnd = B.end(); rowit != rowEnd; ++rowit )
{
const int rowIdx = rowit.index();
const auto colEnd = rowit->end();
for( auto colit = rowit->begin(); colit != colEnd; ++colit )
{
const int colIdx = colit.index();
// op either implements += or -=
if( add )
{
res.entry( rowIdx, colIdx ) += (*colit);
}
else
{
res.entry( rowIdx, colIdx ) -= (*colit);
}
}
}
res.compress();
}
void addRhs(BVector& x, Mat& jac) const {
assert(x.size() == rhs.size());
x += rhs_;
Mat A;//( jac );
// jac = A + duneA
//matAdd( A, jac, duneA_ );
//jac = A;
jac += duneA_;
}
void apply( Mat& A,
BVector& res) const {
Mat BmultinvD;
Mat duneA;
Dune::matMultMat(BmultinvD, duneB_ , invDuneD_);
Dune::matMultMat(duneA, BmultinvD, duneC_);
//std::cout << "before" << std::endl;
//std::cout << "A" << std::endl;
//print(A);
//std::cout << "duneA" << std::endl;
//print(duneA);
Mat E;//( A );
// A = E - duneA
//matSubstract( E, A, duneA );
//A = E;
A -= duneA;
//std::cout << "after" << std::endl;
//print(A);
BmultinvD.mmv(resWell_, res);
}
void recoverVariable(const BVector& x, BVector& xw) const {
BVector resWell = resWell_;
duneC_.mmv(x, resWell);
invDuneD_.mv(resWell, xw);
}
void addDuneMatrix(Eigen::SparseMatrix eigen, Mat& dune, int p1, int p2) {
//Mat dune( eigen.rows(), eigen.cols(), eigen.nonZeros(), 0.4,Mat::implicit) ;
const int* ia = eigen.outerIndexPtr();
const int* ja = eigen.innerIndexPtr();
for (int row = 0; row < eigen.rows(); ++row) {
dune.entry(ia[row],ja[row])[p1][p2] = eigen.coeff(ia[row] ,ja[row]);
}
}
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
return phaseToComp[ phaseIdx ];
}
int flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
return flowToEbos[ flowPv ];
}
int ebosCompToFlowPhaseIdx( const int compIdx ) const
{
const int compToPhase[ 3 ] = { Oil, Water, Gas };
return compToPhase[ compIdx ];
}
void init(const BlackoilPropsAdInterface* fluid_arg,
const std::vector* active_arg,
const std::vector* pc_arg,
const VFPProperties* vfp_properties_arg,
const double gravity_arg,
const Vector& depth_arg)
{
fluid_ = fluid_arg;
active_ = active_arg;
phase_condition_ = pc_arg;
vfp_properties_ = vfp_properties_arg;
gravity_ = gravity_arg;
perf_cell_depth_ = subset(depth_arg, wellOps().well_cells);
}
const WellOps& wellOps() const
{
return wops_;
}
int numPhases() const { return wells().number_of_phases; }
int numCells() const { return pv_.size();}
template
void resetWellControlFromState(WellState xw) {
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
well_controls_set_current( wc, xw.currentControls()[w]);
}
}
const Wells& wells() const
{
assert(wells_ != 0);
return *(wells_);
}
const Wells* wellsPointer() const
{
return wells_;
}
/// return true if wells are available in the reservoir
bool wellsActive() const
{
return wells_active_;
}
void setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
/// return true if wells are available on this process
bool localWellsActive() const
{
return wells_ ? (wells_->number_of_wells > 0 ) : false;
}
int numWellVars() const
{
if ( !localWellsActive() )
{
return 0;
}
// For each well, we have a bhp variable, and one flux per phase.
const int nw = wells().number_of_wells;
return (numPhases() + 1) * nw;
}
/// Density of each well perforation
Vector& wellPerforationDensities() // mutable version kept for BlackoilMultisegmentModel
{
return well_perforation_densities_;
}
const Vector& wellPerforationDensities() const {
return well_perforation_densities_;
}
/// Diff to bhp for each well perforation.
Vector& wellPerforationPressureDiffs() { // mutable version kept for BlackoilMultisegmentModel
return well_perforation_pressure_diffs_;
}
const Vector& wellPerforationPressureDiffs() const
{
return well_perforation_pressure_diffs_;
}
typedef DenseAd::Evaluation Eval;
EvalWell extendEval(Eval in) const {
EvalWell out = 0.0;
out.value = in.value;
for(int i = 0;i<3;++i) {
out.derivatives[i] = in.derivatives[flowToEbosPvIdx(i)];
}
return out;
}
void
setWellVariables(const WellState& xw) {
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
for (int w = 0; w < nw; ++w) {
wellVariables_[w + nw*phaseIdx] = 0.0;
wellVariables_[w + nw*phaseIdx].value = xw.wellSolutions()[w + nw* phaseIdx];
wellVariables_[w + nw*phaseIdx].derivatives[np + phaseIdx] = 1.0;
}
}
}
void print(EvalWell in) const {
std::cout << in.value << std::endl;
for (int i = 0; i < in.derivatives.size(); ++i) {
std::cout << in.derivatives[i] << std::endl;
}
}
void
computeAccumWells() {
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
for (int w = 0; w < nw; ++w) {
F0_[w + nw * phaseIdx] = wellVolumeFraction(w,phaseIdx).value;
}
}
}
EvalWell extractDenseAD(const ADB& data, int i, int j) const
{
EvalWell output = 0.0;
output.value = data.value()[i];
const int np = wells().number_of_phases;
const std::vector& jac = data.derivative();
//std::cout << jac.size() << std::endl;
int numblocs = jac.size();
for (int b = 0; b < numblocs; ++b) {
if (b < np) { // don't copy well blocks)
//std::cout << jac[b].coeff(i,j) << std::endl;
output.derivatives[b] = jac[b].coeff(i,j);
}
}
return output;
}
EvalWell extractDenseADWell(const ADB& data, int i) const
{
EvalWell output = 0.0;
output.value = data.value()[i];
const int nw = wells().number_of_wells;
const int np = wells().number_of_phases;
const std::vector& jac = data.derivative();
//std::cout << jac.size() << std::endl;
int numblocs = jac.size();
for (int b = 0; b < np; ++b) {
output.derivatives[b+np] = jac[numblocs-1].coeff(i, b*nw + i);
}
return output;
}
const ADB convertToADB(const std::vector& local, const std::vector& well_cells, const int nc, const std::vector& well_id, const int nw, const int numVars) const
{
typedef typename ADB::M M;
const int nLocal = local.size();
typename ADB::V value( nLocal );
//const int numVars = 5;
const int np = wells().number_of_phases;
std::vector> mat(np, Eigen::SparseMatrix(nLocal,nc));
Eigen::SparseMatrix matFlux(nLocal,np*nw);
Eigen::SparseMatrix matBHP(nLocal,nw);
for( int i=0; i jacs( numVars );
if (numVars == 4) {
for( int d=0; d(deri[d]);
jacs[ d ] = M(mat[d]);
}
jacs[3] = M(matFlux);
//jacs[4] = M(matBHP);
}
else if (numVars == 1) {
jacs[0] = M(matFlux);
//jacs[1] = M(matBHP);
}
//std::cout << numVars << std::endl;
return ADB::function( std::move( value ), std::move( jacs ));
}
template
void updatePerfPhaseRatesAndPressures(const std::vector& cq_s,
WellState& xw) const
{
if ( !localWellsActive() )
{
// If there are no wells in the subdomain of the proces then
// cq_s has zero size and will cause a segmentation fault below.
return;
}
// Update the perforation phase rates (used to calculate the pressure drop in the wellbore).
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
}
xw.perfPhaseRates().assign(cq.data(), cq.data() + nperf*np);
// Update the perforation pressures.
const V& cdp = wellPerforationPressureDiffs();
for (int w = 0; w < nw; ++w ) {
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
xw.perfPress()[perf] = cdp[perf] + xw.bhp()[w];
}
}
}
void
addWellFluxEq(std::vector cq_s,
const double dt,
const int numBlocks,
LinearisedBlackoilResidual& residual,
Mat& duneD,
BVector& resWell)
{
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
double volume = 0.002831684659200; // 0.1 cu ft;
//std::vector F = wellVolumeFractions(state);
//std::cout << F0_[0] << std::endl;
//std::cout << F[0] << std::endl;
//std::cout << "før Ebos" < res_vec(nw);
for (int w = 0; w < nw; ++w) {
EvalWell res = (wellVolumeFraction(w, p) - F0_[w + nw*p]) * volume / dt;
res += getQs(w, p);
//for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
// res -= cq_s[perf*np + p];
//}
res_vec[w] = res;
for (int i = 0; i < np; ++i) {
duneD.entry(w,w)[flowPhaseToEbosCompIdx(p)][flowToEbosPvIdx(i)] += res.derivatives[i+3];
}
resWell[w][flowPhaseToEbosCompIdx(p)] += res.value;
}
// ADB tmp = convertToADBWell(res_vec, numBlocks);
// qs += superset(tmp,Span(nw,1,p*nw), nw*np);
}
//wellModel().convertToADB(res_vec, well_cells, nc, well_id, nw, numBlocks);
//ADB qs = state.qs;
// for (int phase = 0; phase < np; ++phase) {
// qs -= superset(wellOps().p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
// //qs += superset((F[phase]-F0_[phase]) * vol_dt, Span(nw,1,phase*nw), nw*np);
// }
// residual.well_flux_eq = qs;
//std::cout << "etter Ebos" << residual_.well_flux_eq << std::endl;
}
const AutoDiffBlock convertToADBWell(const std::vector& local, const int numVars) const
{
typedef typename ADB::M M;
const int nLocal = local.size();
typename ADB::V value( nLocal );
//const int numVars = 5;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
Eigen::SparseMatrix matFlux(nLocal,np*nw);
for( int i=0; i jacs( numVars );
if (numVars == 4) {
for( int d=0; d(deri[d]);
//jacs[ d ] = M(mat[d]);
}
jacs[3] = M(matFlux);
//jacs[4] = M(matBHP);
}
else if (numVars == 1) {
jacs[0] = M(matFlux);
//jacs[1] = M(matBHP);
}
//std::cout << numVars << std::endl;
return ADB::function( std::move( value ), std::move( jacs ));
}
template
void
computeWellFluxDense(const Simulator& ebosSimulator,
std::vector& cq_s,
const int numBlocks,
Mat& duneA,
Mat& duneB,
Mat& duneC,
Mat& duneD,
BVector& rhs,
BVector& resWell,
WellState& well_state) const
{
if( ! localWellsActive() ) return ;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
V Tw = Eigen::Map(wells().WI, nperf);
const std::vector& well_cells = wellOps().well_cells;
std::vector well_id(nperf);
std::vector> cq_s_dense(np, std::vector(nperf,0.0));
// pressure diffs computed already (once per step, not changing per iteration)
const V& cdp = wellPerforationPressureDiffs();
for (int w = 0; w < nw; ++w) {
EvalWell bhp = getBhp(w);
// TODO: fix for 2-phase case
std::vector cmix_s(np,0.0);
for (int phase = 0; phase < np; ++phase) {
//int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
cmix_s[phase] = wellVolumeFraction(w,phase);
}
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
well_id[perf] = w;
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell rs = extendEval(fs.Rs());
EvalWell rv = extendEval(fs.Rv());
std::vector b_perfcells_dense(np, 0.0);
std::vector mob_perfcells_dense(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
mob_perfcells_dense[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + cdp[perf];
// Store the perforation pressure for later usage.
well_state.perfPress()[perf] = well_pressure.value;
EvalWell drawdown = pressure - well_pressure;
// injection perforations
if ( drawdown.value > 0 ) {
//Do nothing if crossflow is not allowed
if (!wells().allow_cf[w] && wells().type[w] == INJECTOR)
continue;
// compute phase volumetric rates at standard conditions
std::vector cq_ps(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
const EvalWell cq_p = - Tw[perf] * (mob_perfcells_dense[phase] * drawdown);
cq_ps[phase] = b_perfcells_dense[phase] * cq_p;
}
if ((*active_)[Oil] && (*active_)[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_psOil = cq_ps[oilpos];
const EvalWell cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += rs * cq_psOil;
cq_ps[oilpos] += rv * cq_psGas;
}
// map to ADB
for (int phase = 0; phase < np; ++phase) {
cq_s_dense[phase][perf] = cq_ps[phase];
}
} else {
//Do nothing if crossflow is not allowed
if (!wells().allow_cf[w] && wells().type[w] == PRODUCER)
continue;
// Using total mobilities
EvalWell total_mob_dense = mob_perfcells_dense[0];
for (int phase = 1; phase < np; ++phase) {
total_mob_dense += mob_perfcells_dense[phase];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw[perf] * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if ((*active_)[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
}
if ((*active_)[Oil] && (*active_)[Gas]) {
EvalWell well_temperature = extendEval(fs.temperature(FluidSystem::oilPhaseIdx));
EvalWell rsSatEval = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
EvalWell rvSatEval = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
EvalWell rvPerf = 0.0;
if (cmix_s[gaspos] > 0)
rvPerf = cmix_s[oilpos] / cmix_s[gaspos];
if (rvPerf.value > rvSatEval.value) {
rvPerf = rvSatEval;
//rvPerf.value = rvSatEval.value;
}
EvalWell rsPerf = 0.0;
if (cmix_s[oilpos] > 0)
rsPerf = cmix_s[gaspos] / cmix_s[oilpos];
if (rsPerf.value > rsSatEval.value) {
//rsPerf = 0.0;
rsPerf= rsSatEval;
}
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rvPerf * rsPerf;
const EvalWell tmp_oil = (cmix_s[oilpos] - rvPerf * cmix_s[gaspos]) / d;
//std::cout << "tmp_oil " <
IterationReport solveWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state)
{
const int np = wells().number_of_phases;
std::vector cq_s(np, ADB::null());
WellState well_state0 = well_state;
LinearisedBlackoilResidual residual( { std::vector(3, ADB::null()),
ADB::null(),
ADB::null(),
{ 1.1169, 1.0031, 0.0031 }, // the default magic numbers
false } );
int it = 0;
bool converged;
do {
// bhp and Q for the wells
int nw = wells().number_of_wells;
int nc = numCells();
Mat duneDlo( nw, nw, 9, 0.4,Mat::implicit);
Mat duneBlo( nc, nw, 9, 0.4, Mat::implicit);
Mat duneClo( nw, nc, 9, 0.4, Mat::implicit);
Mat duneAlo( nc, nc, 9, 0.4, Mat::implicit);
BVector rhslo(nc);
BVector resWell(nw);
computeWellFluxDense(ebosSimulator, cq_s, 1, duneAlo, duneBlo, duneClo, duneDlo, rhslo, resWell, well_state);
//updatePerfPhaseRatesAndPressures(cq_s, well_state);
addWellFluxEq(cq_s, dt, 1, residual, duneDlo, resWell);
duneDlo.compress();
localInvert(duneDlo);
resWell_ = resWell;
converged = getWellConvergence(ebosSimulator, it);
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
BVector dx_new (nw);
duneDlo.mv(resWell_, dx_new);
V dx_new_eigen(np*nw);
for( int p=0; p residual() {
const int np = numPhases();
const int nw = wells().number_of_wells;
std::vector res(np*nw);
for( int p=0; p
bool getWellConvergence(Simulator& ebosSimulator,
const int iteration)
{
const int np = numPhases();
const int nc = numCells();
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector R_sum(np);
std::vector B_avg(np);
std::vector maxCoeff(np);
std::vector maxNormWell(np);
Eigen::Array B(nc, np);
Eigen::Array R(nc, np);
Eigen::Array tempV(nc, np);
for ( int idx = 0; idx < np; ++idx )
{
V b(nc);
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
b[cell_idx] = 1 / fs.invB(ebosPhaseIdx).value;
}
B.col(idx) = b;
}
detail::convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg, maxNormWell, nc, np, pv_, residual());
std::vector well_flux_residual(np);
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(well_flux_residual[phaseIdx])) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg;
msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
ss << std::setw(11) << well_flux_residual[phaseIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
return converged_Well;
}
template
void
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw)
{
if( ! localWellsActive() ) return ;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector arguments, and not Eigen objects.
std::vector b_perf;
std::vector rsmax_perf;
std::vector rvmax_perf;
std::vector surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
const V& pdepth = perf_cell_depth_;
const int nperf = wells().well_connpos[wells().number_of_wells];
const std::vector depth_perf(pdepth.data(), pdepth.data() + nperf);
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, depth_perf, gravity_);
}
template
void
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector& b_perf,
std::vector& rsmax_perf,
std::vector& rvmax_perf,
std::vector& surf_dens_perf)
{
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
const std::vector& well_cells = wellOps().well_cells;
const PhaseUsage& pu = fluid_->phaseUsage();
const int np = fluid_->numPhases();
b_perf.resize(nperf*np);
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
std::vector perf_cond(nperf);
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = (*phase_condition_)[well_cells[perf]];
}
// Compute the average pressure in each well block
const V perf_press = Eigen::Map(xw.perfPress().data(), nperf);
//V avg_press = perf_press*0;
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : perf_press[perf - 1];
const double p_avg = (perf_press[perf] + p_above)/2;
double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value;
if (pu.phase_used[BlackoilPhases::Aqua]) {
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * pu.num_phases] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * pu.num_phases;
if (perf_cond[perf].hasFreeOil()) {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
else {
double rv = fs.Rv().value;
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * pu.num_phases;
if (perf_cond[perf].hasFreeGas()) {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
else {
double rs = fs.Rs().value;
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
}
}
if (pu.phase_used[BlackoilPhases::Liquid] && pu.phase_used[BlackoilPhases::Vapour]) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
}
// Surface density.
// The compute density segment wants the surface densities as
// an np * number of wells cells array
V rho = superset(fluid_->surfaceDensity(0 , well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
rho += superset(fluid_->surfaceDensity(phase , well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
}
surf_dens_perf.assign(rho.data(), rho.data() + nperf * pu.num_phases);
}
void
addWellContributionToMassBalanceEq(const std::vector& cq_s,
LinearisedBlackoilResidual& residual)
{
if ( !localWellsActive() )
{
// If there are no wells in the subdomain of the proces then
// cq_s has zero size and will cause a segmentation fault below.
return;
}
// Add well contributions to mass balance equations
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
residual.material_balance_eq[phase] -= superset(cq_s[phase], wellOps().well_cells, numCells());
}
}
template
void updateWellState(const Vector& dwells,
WellState& well_state)
{
if( localWellsActive() )
{
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
// Extract parts of dwells corresponding to each part.
int varstart = 0;
const Vector dxvar_well = subset(dwells, Span(np*nw, 1, varstart));
//const Vector dqs = subset(dwells, Span(np*nw, 1, varstart));
varstart += dxvar_well.size();
//const Vector dbhp = subset(dwells, Span(nw, 1, varstart));
//varstart += dbhp.size();
assert(varstart == dwells.size());
// Qs update.
// Since we need to update the wellrates, that are ordered by wells,
// from dqs which are ordered by phase, the simplest is to compute
// dwr, which is the data from dqs but ordered by wells.
const Vector xvar_well_old = Eigen::Map(&well_state.wellSolutions()[0], nw*np);
double dFLimit = 0.2;
double dBHPLimit = 2;
double dTotalRateLimit = 0.5;
//std::cout << "dxvar_well "< F(np,0.0);
const int sign2 = dxvar_well[nw + w] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dxvar_well[nw + w]),dFLimit);
well_state.wellSolutions()[nw + w] = xvar_well_old[nw + w] - dx2_limited;
const int sign3 = dxvar_well[2*nw + w] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dxvar_well[2*nw + w]),dFLimit);
well_state.wellSolutions()[2*nw + w] = xvar_well_old[2*nw + w] - dx3_limited;
F[Water] = well_state.wellSolutions()[nw + w];
F[Gas] = well_state.wellSolutions()[2*nw + w];
F[Oil] = 1.0 - F[Water] - F[Gas];
// const double dFw = dxvar_well[nw + w];
// const double dFg = dxvar_well[nw*2 + w];
// const double dFo = - dFw - dFg;
// //std::cout << w << " "<< F[Water] << " " << F[Oil] << " " << F[Gas] << std::endl;
// double step = dFLimit / std::max(std::abs(dFw),std::max(std::abs(dFg),std::abs(dFo))); //)) / dFLimit;
// step = std::min(step, 1.0);
// //std::cout << step << std::endl;
// F[Water] = xvar_well_old[nw + w] - step*dFw;
// F[Gas] = xvar_well_old[2*nw + w] - step*dFg;
// F[Oil] = (1.0 - xvar_well_old[2*nw + w] - xvar_well_old[nw + w]) - step * dFo;
if (F[Water] < 0.0) {
F[Gas] /= (1.0 - F[Water]);
F[Oil] /= (1.0 - F[Water]);
F[Water] = 0.0;
}
if (F[Gas] < 0.0) {
F[Water] /= (1.0 - F[Gas]);
F[Oil] /= (1.0 - F[Gas]);
F[Gas] = 0.0;
}
if (F[Oil] < 0.0) {
F[Water] /= (1.0 - F[Oil]);
F[Gas] /= (1.0 - F[Oil]);
F[Oil] = 0.0;
}
well_state.wellSolutions()[nw + w] = F[Water];
well_state.wellSolutions()[2*nw + w] = F[Gas];
//std::cout << wells().name[w] << " "<< F[Water] << " " << F[Oil] << " " << F[Gas] << std::endl;
std::vector g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
for (int p = 0; p < np; ++p) {
F[p] /= distr[p];
}
} else {
for (int p = 0; p < np; ++p) {
F[p] /= g[p];
}
}
//std::cout << w << " "<< F[Water] << " " << F[Oil] << " " << F[Gas] << std::endl;
// const double dFw = dxvar_well[nw + w];
// const double dFg = dxvar_well[nw*2 + w];
// const double dFo = - dFw - dFg;
//std::cout << w << " "<< F[Water] << " " << F[Oil] << " " << F[Gas] << std::endl;
// double step = dFLimit / std::max(std::abs(dFw),std::max(std::abs(dFg),std::abs(dFo))); //)) / dFLimit;
// step = std::min(step, 1.0);
// std::cout << step << std::endl;
// F[Water] = xvar_well_old[nw + w] - step*dFw;
// F[Gas] = xvar_well_old[2*nw + w] - step*dFg;
// F[Oil] = (1.0 - xvar_well_old[2*nw + w] - xvar_well_old[nw + w]) - step * dFo;
// double sumF = F[Water]+F[Gas]+F[Oil];
// F[Water] /= sumF;
// F[Gas] /= sumF;
// F[Oil] /= sumF;
// well_state.wellSolutions()[nw + w] = F[Water];
// well_state.wellSolutions()[2 * nw + w] = F[Gas];
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
//const int sign1 = dxvar_well[w] > 0 ? 1: -1;
//const double dx1_limited = sign1 * std::min(std::abs(dxvar_well[w]),std::abs(xvar_well_old[w])*dTotalRateLimit);
well_state.wellSolutions()[w] = xvar_well_old[w] - dxvar_well[w];
switch (wells().type[w]) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = wells().comp_frac[np*w + p];
//if (comp_frac > 0) {
well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[w];
//}
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = well_state.wellSolutions()[w] * F[p];
}
break;
}
}
break;
case SURFACE_RATE:
{
const int sign1 = dxvar_well[w] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dxvar_well[w]),std::abs(xvar_well_old[w])*dBHPLimit);
well_state.wellSolutions()[w] = xvar_well_old[w] - dx1_limited;
//const int sign = (dxvar_well1[w] < 0) ? -1 : 1;
//well_state.bhp()[w] -= sign * std::min( std::abs(dxvar_well1[w]), std::abs(well_state.bhp()[w])*dpmaxrel) ;
well_state.bhp()[w] = well_state.wellSolutions()[w];
if (wells().type[w]==PRODUCER) {
double F_target = 0.0;
for (int p = 0; p < np; ++p) {
F_target += wells().comp_frac[np*w + p] * F[p];
}
for (int p = 0; p < np; ++p) {
//std::cout << F[p] << std::endl;
well_state.wellRates()[np*w + p] = F[p] * target_rate /F_target;
}
} else {
for (int p = 0; p < np; ++p) {
//std::cout << wells().comp_frac[np*w + p] << " " < 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dxvar_well[w]),std::abs(xvar_well_old[w])*dBHPLimit);
well_state.wellSolutions()[w] = xvar_well_old[w] - dx1_limited;
//const int sign = (dxvar_well1[w] < 0) ? -1 : 1;
//well_state.bhp()[w] -= sign * std::min( std::abs(dxvar_well1[w]), std::abs(well_state.bhp()[w])*dpmaxrel) ;
well_state.bhp()[w] = well_state.wellSolutions()[w];
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate;
}
}
break;
}
}
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
//Loop over all wells
#pragma omp parallel for schedule(static)
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
const int nwc = well_controls_get_num(wc);
//Loop over all controls until we find a THP control
//that specifies what we need...
//Will only update THP for wells with THP control
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(wc, ctrl_index) == THP) {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
if ((*active_)[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if ((*active_)[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if ((*active_)[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
double alq = well_controls_iget_alq(wc, ctrl_index);
int table_id = well_controls_iget_vfp(wc, ctrl_index);
const WellType& well_type = wells().type[w];
if (well_type == INJECTOR) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(),
wellPerforationDensities(), gravity_);
well_state.thp()[w] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, well_state.bhp()[w] + dp);
}
else if (well_type == PRODUCER) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(),
wellPerforationDensities(), gravity_);
well_state.thp()[w] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, well_state.bhp()[w] + dp, alq);
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
//Assume only one THP control specified for each well
break;
}
}
}
}
}
template
void updateWellControls(WellState& xw)
{
if( !localWellsActive() ) return ;
std::string modestring[4] = { "BHP", "THP", "RESERVOIR_RATE", "SURFACE_RATE" };
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
#pragma omp parallel for schedule(dynamic)
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wells().type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
// We disregard terminal_ouput here as with it only messages
// for wells on one process will be printed.
std::ostringstream ss;
ss << "Switching control mode for well " << wells().name[w]
<< " from " << modestring[well_controls_iget_type(wc, current)]
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
OpmLog::info(ss.str());
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
well_controls_set_current( wc, current);
// Updating well state and primary variables if constraint is broken
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[w] = target;
break;
case THP: {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
if ((*active_)[ Water ]) {
aqua = xw.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if ((*active_)[ Oil ]) {
liquid = xw.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if ((*active_)[ Gas ]) {
vapour = xw.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[w];
if (well_type == INJECTOR) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities(), gravity_);
xw.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities(), gravity_);
xw.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
case RESERVOIR_RATE:
// No direct change to any observable quantity at
// surface condition. In this case, use existing
// flow rates as initial conditions as reservoir
// rate acts only in aggregate.
break;
case SURFACE_RATE:
// assign target value as initial guess for injectors and
// single phase producers (orat, grat, wrat)
const WellType& well_type = wells().type[w];
if (well_type == INJECTOR) {
for (int phase = 0; phase < np; ++phase) {
const double& compi = wells().comp_frac[np * w + phase];
//if (compi > 0.0) {
xw.wellRates()[np*w + phase] = target * compi;
//}
}
} else if (well_type == PRODUCER) {
// only set target as initial rates for single phase
// producers. (orat, grat and wrat, and not lrat)
// lrat will result in numPhasesWithTargetsUnderThisControl == 2
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0 && numPhasesWithTargetsUnderThisControl < 2 ) {
xw.wellRates()[np*w + phase] = target * distr[phase];
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
std::vector g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
const double* distr = well_controls_iget_distr(wc, current);
for (int phase = 0; phase < np; ++phase) {
g[phase] = distr[phase];
}
}
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
const WellType& well_type = wells().type[w];
xw.wellSolutions()[w] = 0.0;
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[w] += xw.wellRates()[np*w + p] * wells().comp_frac[np*w + p];
}
} else {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[w] += g[p] * xw.wellRates()[np*w + p];
}
}
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
xw.wellSolutions()[w] = xw.bhp()[w];
}
break;
}
double tot_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
tot_well_rate += g[p] * xw.wellRates()[np*w + p];
}
if(std::abs(tot_well_rate) > 0) {
xw.wellSolutions()[nw + w] = g[Water] * xw.wellRates()[np*w + Water] / tot_well_rate; //wells->comp_frac[np*w + Water]; // Water;
xw.wellSolutions()[2*nw + w] = g[Gas] * xw.wellRates()[np*w + Gas] / tot_well_rate ; //wells->comp_frac[np*w + Gas]; //Gas
} else {
//xw.wellSolutions()[nw + w] = wells().comp_frac[np*w + Water];
//xw.wellSolutions()[2 * nw + w] = wells().comp_frac[np*w + Gas];
}
}
}
}
template
void computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw)
{
if( ! localWellsActive() ) return ;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector arguments, and not Eigen objects.
std::vector b_perf;
std::vector rsmax_perf;
std::vector rvmax_perf;
std::vector surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
const Vector& pdepth = perf_cell_depth_;
const int nperf = wells().well_connpos[wells().number_of_wells];
const std::vector depth_perf(pdepth.data(), pdepth.data() + nperf);
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, depth_perf, gravity_);
}
// state0 is non-constant, while it will not be used outside of the function
template
void
computeWellPotentials(const std::vector& mob_perfcells,
const std::vector& b_perfcells,
SolutionState& state0,
WellState& well_state)
{
const int nw = wells().number_of_wells;
const int np = wells().number_of_phases;
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
Vector bhps = Vector::Zero(nw);
for (int w = 0; w < nw; ++w) {
const WellControls* ctrl = wells().ctrls[w];
const int nwc = well_controls_get_num(ctrl);
//Loop over all controls until we find a BHP control
//or a THP control that specifies what we need.
//Pick the value that gives the most restrictive flow
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == BHP) {
bhps[w] = well_controls_iget_target(ctrl, ctrl_index);
}
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
if ((*active_)[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if ((*active_)[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if ((*active_)[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(ctrl, ctrl_index);
const double& thp = well_controls_iget_target(ctrl, ctrl_index);
const double& alq = well_controls_iget_alq(ctrl, ctrl_index);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[w];
if (well_type == INJECTOR) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities(), gravity_);
const double bhp = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
// apply the strictest of the bhp controlls i.e. smallest bhp for injectors
if ( bhp < bhps[w]) {
bhps[w] = bhp;
}
}
else if (well_type == PRODUCER) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities(), gravity_);
const double bhp = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
// apply the strictest of the bhp controlls i.e. largest bhp for producers
if ( bhp > bhps[w]) {
bhps[w] = bhp;
}
}
else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
}
// use bhp limit from control
state0.bhp = ADB::constant(bhps);
// compute well potentials
Vector aliveWells;
std::vector well_potentials;
computeWellFlux(state0, mob_perfcells, b_perfcells, aliveWells, well_potentials);
// store well potentials in the well state
// transform to a single vector instead of separate vectors pr phase
const int nperf = wells().well_connpos[nw];
Vector cq = superset(well_potentials[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(well_potentials[phase].value(), Span(nperf, np, phase), nperf*np);
}
well_state.wellPotentials().assign(cq.data(), cq.data() + nperf*np);
}
/// If set, computeWellFlux() will additionally store the
/// total reservoir volume perforation fluxes.
void setStoreWellPerforationFluxesFlag(const bool store_fluxes)
{
store_well_perforation_fluxes_ = store_fluxes;
}
/// Retrieves the stored fluxes. It is an error to call this
/// unless setStoreWellPerforationFluxesFlag(true) has been
/// called.
const Vector& getStoredWellPerforationFluxes() const
{
assert(store_well_perforation_fluxes_);
return well_perforation_fluxes_;
}
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
return flowToEbos[ phaseIdx ];
}
/// upate the dynamic lists related to economic limits
template
void
updateListEconLimited(ScheduleConstPtr schedule,
const int current_step,
const Wells* wells_struct,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
const int nw = wells_struct->number_of_wells;
for (int w = 0; w < nw; ++w) {
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
const std::string& well_name = wells_struct->name[w];
const Well* well_ecl = schedule->getWell(well_name);
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
// economic limits only apply for production wells.
if (wells_struct->type[w] != PRODUCER) {
continue;
}
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
continue;
}
// for the moment, we only handle rate limits, not handling potential limits
// the potential limits should not be difficult to add
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
if (quantity_limit == WellEcon::POTN) {
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
+ std::string("All the limits will be evaluated based on RATE. ");
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
}
const WellMapType& well_map = well_state.wellMap();
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
assert(i_well != well_map.end()); // should always be found?
const WellMapEntryType& map_entry = i_well->second;
const int well_number = map_entry[0];
if (econ_production_limits.onAnyRateLimit()) {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
if (well_ecl->getAutomaticShutIn()) {
list_econ_limited.addShutWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
OpmLog::info(msg);
} else {
list_econ_limited.addStoppedWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
OpmLog::info(msg);
}
// the well is closed, not need to check other limits
continue;
}
// checking for ratio related limits, mostly all kinds of ratio.
bool ratio_limits_violated = false;
RatioCheckTuple ratio_check_return;
if (econ_production_limits.onAnyRatioLimit()) {
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
ratio_limits_violated = std::get<0>(ratio_check_return);
}
if (ratio_limits_violated) {
const bool last_connection = std::get<1>(ratio_check_return);
const int worst_offending_connection = std::get<2>(ratio_check_return);
const int perf_start = map_entry[1];
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
+ well_name + std::string(" will be closed due to economic limit");
OpmLog::info(msg);
if (last_connection) {
list_econ_limited.addShutWell(well_name);
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
OpmLog::info(msg2);
}
}
}
}
template
void computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf,
const std::vector& depth_perf,
const double grav) {
// Compute densities
std::vector cd =
WellDensitySegmented::computeConnectionDensities(
wells(), xw, fluid_->phaseUsage(),
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
const int nperf = wells().well_connpos[wells().number_of_wells];
// Compute pressure deltas
std::vector cdp =
WellDensitySegmented::computeConnectionPressureDelta(
wells(), depth_perf, cd, grav);
// Store the results
well_perforation_densities_ = Eigen::Map(cd.data(), nperf);
well_perforation_pressure_diffs_ = Eigen::Map(cdp.data(), nperf);
}
protected:
bool wells_active_;
const Wells* wells_;
const WellOps wops_;
ModelParameters param_;
bool terminal_output_;
const BlackoilPropsAdInterface* fluid_;
const std::vector* active_;
const std::vector* phase_condition_;
const VFPProperties* vfp_properties_;
double gravity_;
// the depth of the all the cell centers
// for standard Wells, it the same with the perforation depth
Vector perf_cell_depth_;
Vector well_perforation_densities_;
Vector well_perforation_pressure_diffs_;
bool store_well_perforation_fluxes_;
Vector well_perforation_fluxes_;
std::vector wellVariables_;
std::vector F0_;
const std::vector& pv_;
Mat duneA_;
Mat duneB_;
Mat duneC_;
Mat invDuneD_;
BVector resWell_;
BVector rhs_;
// protected methods
EvalWell getBhp(const int wellIdx) const {
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == BHP) {
EvalWell bhp = 0.0;
const double target_rate = well_controls_get_current_target(wc);
bhp.value = target_rate;
return bhp;
}
return wellVariables_[wellIdx];
}
EvalWell getQs(const int wellIdx, const int phaseIdx) const {
EvalWell qs = 0.0;
const WellControls* wc = wells().ctrls[wellIdx];
const int np = fluid_->numPhases();
const double target_rate = well_controls_get_current_target(wc);
if (wells().type[wellIdx] == INJECTOR) {
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
if (comp_frac == 0.0)
return qs;
if (well_controls_get_current_type(wc) == BHP) {
return wellVariables_[wellIdx];
}
qs.value = target_rate;
return qs;
}
// Producers
if (well_controls_get_current_type(wc) == BHP) {
return wellVariables_[wellIdx] * wellVolumeFractionScaled(wellIdx,phaseIdx);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
if (comp_frac == 1.0) {
qs.value = target_rate;
return qs;
}
int currentControlIdx = 0;
for (int i = 0; i < np; ++i) {
currentControlIdx += wells().comp_frac[np*wellIdx + i] * i;
}
if (wellVolumeFractionScaled(wellIdx,currentControlIdx) == 0) {
return qs;
}
return (target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx) / wellVolumeFractionScaled(wellIdx,currentControlIdx));
}
// ReservoirRate
return target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx);
}
EvalWell wellVolumeFraction(const int wellIdx, const int phaseIdx) const {
assert(fluid_.numPhases() == 3);
const int nw = wells().number_of_wells;
if (phaseIdx == Water) {
return wellVariables_[nw + wellIdx];
}
if (phaseIdx == Gas) {
return wellVariables_[2*nw + wellIdx];
}
// Oil
return 1.0 - wellVariables_[nw + wellIdx] - wellVariables_[2 * nw + wellIdx];
}
EvalWell wellVolumeFractionScaled(const int wellIdx, const int phaseIdx) const {
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
const double* distr = well_controls_get_current_distr(wc);
return wellVolumeFraction(wellIdx, phaseIdx) / distr[phaseIdx];
}
std::vector g = {1,1,0.01};
return (wellVolumeFraction(wellIdx, phaseIdx) / g[phaseIdx]);
}
template
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const int well_number) const
{
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
const int np = well_state.numPhases();
if (econ_production_limits.onMinOilRate()) {
assert((*active_)[Oil]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert((*active_)[Gas]);
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert((*active_)[Oil]);
assert((*active_)[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
using WellMapType = typename WellState::WellMapType;
using WellMapEntryType = typename WellState::mapentry_t;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
// values should not be used.
// second value indicates whehter there is only one connection left.
// third value indicates the indx of the worst-offending connection.
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple;
enum ConnectionIndex {
INVALIDCONNECTION = -10000
};
template
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
// TODO: not sure how to define the worst-offending connection when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending connection separately.
// Among the worst-offending connections, we use the one has the biggest violation
// extent.
bool any_limit_violated = false;
bool last_connection = false;
int worst_offending_connection = INVALIDCONNECTION;
double violation_extent = -1.0;
if (econ_production_limits.onMaxWaterCut()) {
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
bool water_cut_violated = std::get<0>(water_cut_return);
if (water_cut_violated) {
any_limit_violated = true;
const double violation_extent_water_cut = std::get<3>(water_cut_return);
if (violation_extent_water_cut > violation_extent) {
violation_extent = violation_extent_water_cut;
worst_offending_connection = std::get<2>(water_cut_return);
last_connection = std::get<1>(water_cut_return);
}
}
}
if (econ_production_limits.onMaxGasOilRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
}
if (econ_production_limits.onMaxWaterGasRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (any_limit_violated) {
assert(worst_offending_connection >=0);
assert(violation_extent > 1.);
}
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
template
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
bool water_cut_limit_violated = false;
int worst_offending_connection = INVALIDCONNECTION;
bool last_connection = false;
double violation_extent = -1.0;
const int np = well_state.numPhases();
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
const int well_number = map_entry[0];
assert((*active_)[Oil]);
assert((*active_)[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
double water_cut;
if (std::abs(liquid_rate) != 0.) {
water_cut = water_rate / liquid_rate;
} else {
water_cut = 0.0;
}
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
if (water_cut > max_water_cut_limit) {
water_cut_limit_violated = true;
}
if (water_cut_limit_violated) {
// need to handle the worst_offending_connection
const int perf_start = map_entry[1];
const int perf_number = map_entry[2];
std::vector water_cut_perf(perf_number);
for (int perf = 0; perf < perf_number; ++perf) {
const int i_perf = perf_start + perf;
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
if (std::abs(liquid_perf_rate) != 0.) {
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
} else {
water_cut_perf[perf] = 0.;
}
}
last_connection = (perf_number == 1);
if (last_connection) {
worst_offending_connection = 0;
violation_extent = water_cut_perf[0] / max_water_cut_limit;
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
double max_water_cut_perf = 0.;
for (int perf = 0; perf < perf_number; ++perf) {
if (water_cut_perf[perf] > max_water_cut_perf) {
worst_offending_connection = perf;
max_water_cut_perf = water_cut_perf[perf];
}
}
assert(max_water_cut_perf != 0.);
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
violation_extent = max_water_cut_perf / max_water_cut_limit;
}
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
};
} // namespace Opm
#include "StandardWellsDense_impl.hpp"
#endif