/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include // A debugging utility. #define DUMP(foo) \ do { \ std::cout << "==========================================\n" \ << #foo ":\n" \ << collapseJacs(foo) << std::endl; \ } while (0) #define DUMPVAL(foo) \ do { \ std::cout << "==========================================\n" \ << #foo ":\n" \ << foo.value() << std::endl; \ } while (0) #define DISKVAL(foo) \ do { \ std::ofstream os(#foo); \ os.precision(16); \ os << foo.value() << std::endl; \ } while (0) namespace Opm { typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef Eigen::Array DataBlock; namespace { std::vector buildAllCells(const int nc) { std::vector all_cells(nc); for (int c = 0; c < nc; ++c) { all_cells[c] = c; } return all_cells; } template V computePerfPress(const Grid& grid, const Wells& wells, const V& rho, const double grav) { using namespace Opm::AutoDiffGrid; const int nw = wells.number_of_wells; const int nperf = wells.well_connpos[nw]; const int dim = dimensions(grid); V wdp = V::Zero(nperf,1); assert(wdp.size() == rho.size()); // Main loop, iterate over all perforations, // using the following formula: // wdp(perf) = g*(perf_z - well_ref_z)*rho(perf) // where the total density rho(perf) is taken to be // sum_p (rho_p*saturation_p) in the perforation cell. // [although this is computed on the outside of this function]. for (int w = 0; w < nw; ++w) { const double ref_depth = wells.depth_ref[w]; for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) { const int cell = wells.well_cells[j]; const double cell_depth = cellCentroid(grid, cell)[dim - 1]; wdp[j] = rho[j]*grav*(cell_depth - ref_depth); } } return wdp; } template std::vector activePhases(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector active(maxnp, false); for (int p = 0; p < pu.MaxNumPhases; ++p) { active[ p ] = pu.phase_used[ p ] != 0; } return active; } template std::vector active2Canonical(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector act2can(maxnp, -1); for (int phase = 0; phase < maxnp; ++phase) { if (pu.phase_used[ phase ]) { act2can[ pu.phase_pos[ phase ] ] = phase; } } return act2can; } } // Anonymous namespace template void FullyImplicitBlackoilSolver::SolverParameter:: reset() { // default values for the solver parameters dp_max_rel_ = 1.0e9; ds_max_ = 0.2; dr_max_rel_ = 1.0e9; relax_type_ = DAMPEN; relax_max_ = 0.5; relax_increment_ = 0.1; relax_rel_tol_ = 0.2; max_iter_ = 15; max_residual_allowed_ = std::numeric_limits< double >::max(); } template FullyImplicitBlackoilSolver::SolverParameter:: SolverParameter() { // set default values reset(); } template FullyImplicitBlackoilSolver::SolverParameter:: SolverParameter( const parameter::ParameterGroup& param ) { // set default values reset(); // overload with given parameters dp_max_rel_ = param.getDefault("dp_max_rel", dp_max_rel_); ds_max_ = param.getDefault("ds_max", ds_max_); dr_max_rel_ = param.getDefault("dr_max_rel", dr_max_rel_); relax_max_ = param.getDefault("relax_max", relax_max_); max_iter_ = param.getDefault("max_iter", max_iter_); max_residual_allowed_ = param.getDefault("max_residual_allowed", max_residual_allowed_); std::string relaxation_type = param.getDefault("relax_type", std::string("dampen")); if (relaxation_type == "dampen") { relax_type_ = DAMPEN; } else if (relaxation_type == "sor") { relax_type_ = SOR; } else { OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type); } } template FullyImplicitBlackoilSolver:: FullyImplicitBlackoilSolver(const SolverParameter& param, const Grid& grid , const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const Wells* wells, const NewtonIterationBlackoilInterface& linsolver, const bool has_disgas, const bool has_vapoil) : grid_ (grid) , fluid_ (fluid) , geo_ (geo) , rock_comp_props_(rock_comp_props) , wells_ (wells) , linsolver_ (linsolver) , active_(activePhases(fluid.phaseUsage())) , canph_ (active2Canonical(fluid.phaseUsage())) , cells_ (buildAllCells(Opm::AutoDiffGrid::numCells(grid))) , ops_ (grid) , wops_ (wells_) , has_disgas_(has_disgas) , has_vapoil_(has_vapoil) , param_( param ) , use_threshold_pressure_(false) , rq_ (fluid.numPhases()) , phaseCondition_(AutoDiffGrid::numCells(grid)) , residual_ ( { std::vector(fluid.numPhases(), ADB::null()), ADB::null(), ADB::null() } ) { } template void FullyImplicitBlackoilSolver:: setThresholdPressures(const std::vector& threshold_pressures_by_face) { const int num_faces = AutoDiffGrid::numFaces(grid_); if (int(threshold_pressures_by_face.size()) != num_faces) { OPM_THROW(std::runtime_error, "Illegal size of threshold_pressures_by_face input, must be equal to number of faces."); } use_threshold_pressure_ = true; // Map to interior faces. const int num_ifaces = ops_.internal_faces.size(); threshold_pressures_by_interior_face_.resize(num_ifaces); for (int ii = 0; ii < num_ifaces; ++ii) { threshold_pressures_by_interior_face_[ii] = threshold_pressures_by_face[ops_.internal_faces[ii]]; } } template int FullyImplicitBlackoilSolver:: step(const double dt, BlackoilState& x , WellStateFullyImplicitBlackoil& xw) { const V pvdt = geo_.poreVolume() / dt; if (active_[Gas]) { updatePrimalVariableFromState(x); } { const SolutionState state = constantState(x, xw); computeAccum(state, 0); computeWellConnectionPressures(state, xw); } // For each iteration we store in a vector the norms of the residual of // the mass balance for each active phase, the well flux and the well equations std::vector> residual_norms_history; assemble(pvdt, x, xw); bool converged = false; double omega = 1.; residual_norms_history.push_back(computeResidualNorms()); int it = 0; converged = getConvergence(dt,it); const int sizeNonLinear = residual_.sizeNonLinear(); V dxOld = V::Zero(sizeNonLinear); bool isOscillate = false; bool isStagnate = false; const enum RelaxType relaxtype = relaxType(); int linearIterations = 0; while ((!converged) && (it < maxIter())) { V dx = solveJacobianSystem(); // store number of linear iterations used linearIterations += linsolver_.iterations(); detectNewtonOscillations(residual_norms_history, it, relaxRelTol(), isOscillate, isStagnate); if (isOscillate) { omega -= relaxIncrement(); omega = std::max(omega, relaxMax()); std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl; } stablizeNewton(dx, dxOld, omega, relaxtype); updateState(dx, x, xw); assemble(pvdt, x, xw); residual_norms_history.push_back(computeResidualNorms()); // increase iteration counter ++it; converged = getConvergence(dt,it); } if (!converged) { // the runtime_error is caught by the AdaptiveTimeStepping OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations."); return -1; } return linearIterations; } template FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant() : accum(2, ADB::null()) , mflux( ADB::null()) , b ( ADB::null()) , head ( ADB::null()) , mob ( ADB::null()) { } template FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np) : pressure ( ADB::null()) , temperature( ADB::null()) , saturation(np, ADB::null()) , rs ( ADB::null()) , rv ( ADB::null()) , qs ( ADB::null()) , bhp ( ADB::null()) { } template FullyImplicitBlackoilSolver:: WellOps::WellOps(const Wells* wells) : w2p(), p2w() { if( wells ) { w2p = M(wells->well_connpos[ wells->number_of_wells ], wells->number_of_wells); p2w = M(wells->number_of_wells, wells->well_connpos[ wells->number_of_wells ]); const int nw = wells->number_of_wells; const int* const wpos = wells->well_connpos; typedef Eigen::Triplet Tri; std::vector scatter, gather; scatter.reserve(wpos[nw]); gather .reserve(wpos[nw]); for (int w = 0, i = 0; w < nw; ++w) { for (; i < wpos[ w + 1 ]; ++i) { scatter.push_back(Tri(i, w, 1.0)); gather .push_back(Tri(w, i, 1.0)); } } w2p.setFromTriplets(scatter.begin(), scatter.end()); p2w.setFromTriplets(gather .begin(), gather .end()); } } template typename FullyImplicitBlackoilSolver::SolutionState FullyImplicitBlackoilSolver::constantState(const BlackoilState& x, const WellStateFullyImplicitBlackoil& xw) { auto state = variableState(x, xw); // HACK: throw away the derivatives. this may not be the most // performant way to do things, but it will make the state // automatically consistent with variableState() (and doing // things automatically is all the rage in this module ;) state.pressure = ADB::constant(state.pressure.value()); state.temperature = ADB::constant(state.temperature.value()); state.rs = ADB::constant(state.rs.value()); state.rv = ADB::constant(state.rv.value()); for (int phaseIdx= 0; phaseIdx < x.numPhases(); ++ phaseIdx) state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value()); state.qs = ADB::constant(state.qs.value()); state.bhp = ADB::constant(state.bhp.value()); return state; } template typename FullyImplicitBlackoilSolver::SolutionState FullyImplicitBlackoilSolver::variableState(const BlackoilState& x, const WellStateFullyImplicitBlackoil& xw) { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const int np = x.numPhases(); std::vector vars0; // p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions vars0.reserve(np + 1); // Initial pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); vars0.push_back(p); // Initial saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const Opm::PhaseUsage pu = fluid_.phaseUsage(); // We do not handle a Water/Gas situation correctly, guard against it. assert (active_[ Oil]); if (active_[ Water ]) { const V sw = s.col(pu.phase_pos[ Water ]); vars0.push_back(sw); } // store cell status in vectors V isRs = V::Zero(nc,1); V isRv = V::Zero(nc,1); V isSg = V::Zero(nc,1); if (active_[ Gas ]){ for (int c = 0; c < nc ; c++ ) { switch (primalVariable_[c]) { case PrimalVariables::RS: isRs[c] = 1; break; case PrimalVariables::RV: isRv[c] = 1; break; default: isSg[c] = 1; break; } } // define new primary variable xvar depending on solution condition V xvar(nc); const V sg = s.col(pu.phase_pos[ Gas ]); const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); const V rv = Eigen::Map(& x.rv()[0], x.rv().size()); xvar = isRs*rs + isRv*rv + isSg*sg; vars0.push_back(xvar); } // Initial well rates. if( wellsActive() ) { // Need to reshuffle well rates, from phase running fastest // to wells running fastest. const int nw = wells().number_of_wells; // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(& xw.wellRates()[0], nw, np).transpose(); const V qs = Eigen::Map(wrates.data(), nw*np); vars0.push_back(qs); // Initial well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); vars0.push_back(bhp); } else { // push null states for qs and bhp vars0.push_back(V()); vars0.push_back(V()); } std::vector vars = ADB::variables(vars0); SolutionState state(np); // Pressure. int nextvar = 0; state.pressure = vars[ nextvar++ ]; // temperature const V temp = Eigen::Map(& x.temperature()[0], x.temperature().size()); state.temperature = ADB::constant(temp); // Saturations const std::vector& bpat = vars[0].blockPattern(); { ADB so = ADB::constant(V::Ones(nc, 1), bpat); if (active_[ Water ]) { ADB& sw = vars[ nextvar++ ]; state.saturation[pu.phase_pos[ Water ]] = sw; so -= sw; } if (active_[ Gas ]) { // Define Sg Rs and Rv in terms of xvar. // Xvar is only defined if gas phase is active const ADB& xvar = vars[ nextvar++ ]; ADB& sg = state.saturation[ pu.phase_pos[ Gas ] ]; sg = isSg*xvar + isRv* so; so -= sg; if (active_[ Oil ]) { // RS and RV is only defined if both oil and gas phase are active. const ADB& sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : ADB::constant(V::Zero(nc, 1), bpat)); const std::vector pressures = computePressures(state.pressure, sw, so, sg); const ADB rsSat = fluidRsSat(pressures[ Oil ], so , cells_); if (has_disgas_) { state.rs = (1-isRs) * rsSat + isRs*xvar; } else { state.rs = rsSat; } const ADB rvSat = fluidRvSat(pressures[ Gas ], so , cells_); if (has_vapoil_) { state.rv = (1-isRv) * rvSat + isRv*xvar; } else { state.rv = rvSat; } } } if (active_[ Oil ]) { // Note that so is never a primary variable. state.saturation[pu.phase_pos[ Oil ]] = so; } } // Qs. state.qs = vars[ nextvar++ ]; // Bhp. state.bhp = vars[ nextvar++ ]; assert(nextvar == int(vars.size())); return state; } template void FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state, const int aix ) { const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& press = state.pressure; const ADB& temp = state.temperature; const std::vector& sat = state.saturation; const ADB& rs = state.rs; const ADB& rv = state.rv; const std::vector pressures = computePressures(state); const std::vector cond = phaseCondition(); const ADB pv_mult = poroMult(press); const int maxnp = Opm::BlackoilPhases::MaxNumPhases; for (int phase = 0; phase < maxnp; ++phase) { if (active_[ phase ]) { const int pos = pu.phase_pos[ phase ]; rq_[pos].b = fluidReciprocFVF(phase, pressures[phase], temp, rs, rv, cond, cells_); rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos]; // DUMP(rq_[pos].b); // DUMP(rq_[pos].accum[aix]); } } if (active_[ Oil ] && active_[ Gas ]) { // Account for gas dissolved in oil and vaporized oil const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; // Temporary copy to avoid contribution of dissolved gas in the vaporized oil // when both dissolved gas and vaporized oil are present. const ADB accum_gas_copy =rq_[pg].accum[aix]; rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix]; rq_[po].accum[aix] += state.rv * accum_gas_copy; //DUMP(rq_[pg].accum[aix]); } } template void FullyImplicitBlackoilSolver::computeWellConnectionPressures(const SolutionState& state, const WellStateFullyImplicitBlackoil& xw) { if( ! wellsActive() ) return ; using namespace Opm::AutoDiffGrid; // 1. Compute properties required by computeConnectionPressureDelta(). // Note that some of the complexity of this part is due to the function // taking std::vector arguments, and not Eigen objects. const int nperf = wells().well_connpos[wells().number_of_wells]; const std::vector well_cells(wells().well_cells, wells().well_cells + nperf); // Compute b, rsmax, rvmax values for perforations. const std::vector pressures = computePressures(state); const ADB perf_temp = subset(state.temperature, well_cells); std::vector perf_cond(nperf); const std::vector& pc = phaseCondition(); for (int perf = 0; perf < nperf; ++perf) { perf_cond[perf] = pc[well_cells[perf]]; } const PhaseUsage& pu = fluid_.phaseUsage(); DataBlock b(nperf, pu.num_phases); std::vector rssat_perf(nperf, 0.0); std::vector rvsat_perf(nperf, 0.0); if (pu.phase_used[BlackoilPhases::Aqua]) { const ADB perf_press = subset(pressures[ Water ], well_cells); const ADB bw = fluid_.bWat(perf_press, perf_temp, well_cells); b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw.value(); } assert(active_[Oil]); const ADB perf_so = subset(state.saturation[pu.phase_pos[Oil]], well_cells); if (pu.phase_used[BlackoilPhases::Liquid]) { const ADB perf_rs = subset(state.rs, well_cells); const ADB perf_press = subset(pressures[ Oil ], well_cells); const ADB bo = fluid_.bOil(perf_press, perf_temp, perf_rs, perf_cond, well_cells); b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo.value(); const V rssat = fluidRsSat(perf_press.value(), perf_so.value(), well_cells); rssat_perf.assign(rssat.data(), rssat.data() + nperf); } if (pu.phase_used[BlackoilPhases::Vapour]) { const ADB perf_rv = subset(state.rv, well_cells); const ADB perf_press = subset(pressures[ Gas ], well_cells); const ADB bg = fluid_.bGas(perf_press, perf_temp, perf_rv, perf_cond, well_cells); b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg.value(); const V rvsat = fluidRvSat(perf_press.value(), perf_so.value(), well_cells); rvsat_perf.assign(rvsat.data(), rvsat.data() + nperf); } // b is row major, so can just copy data. std::vector b_perf(b.data(), b.data() + nperf * pu.num_phases); // Extract well connection depths. const V depth = cellCentroidsZToEigen(grid_); const V pdepth = subset(depth, well_cells); std::vector perf_depth(pdepth.data(), pdepth.data() + nperf); // Surface density. std::vector surf_dens(fluid_.surfaceDensity(), fluid_.surfaceDensity() + pu.num_phases); // Gravity double grav = 0.0; const double* g = geo_.gravity(); const int dim = dimensions(grid_); if (g) { // Guard against gravity in anything but last dimension. for (int dd = 0; dd < dim - 1; ++dd) { assert(g[dd] == 0.0); } grav = g[dim - 1]; } // 2. Compute pressure deltas, and store the results. std::vector cdp = WellDensitySegmented ::computeConnectionPressureDelta(wells(), xw, fluid_.phaseUsage(), b_perf, rssat_perf, rvsat_perf, perf_depth, surf_dens, grav); well_perforation_pressure_diffs_ = Eigen::Map(cdp.data(), nperf); } template void FullyImplicitBlackoilSolver:: assemble(const V& pvdt, const BlackoilState& x , WellStateFullyImplicitBlackoil& xw ) { using namespace Opm::AutoDiffGrid; // Create the primary variables. SolutionState state = variableState(x, xw); // DISKVAL(state.pressure); // DISKVAL(state.saturation[0]); // DISKVAL(state.saturation[1]); // DISKVAL(state.saturation[2]); // DISKVAL(state.rs); // DISKVAL(state.rv); // DISKVAL(state.qs); // DISKVAL(state.bhp); // -------- Mass balance equations -------- // Compute b_p and the accumulation term b_p*s_p for each phase, // except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o. // These quantities are stored in rq_[phase].accum[1]. // The corresponding accumulation terms from the start of // the timestep (b^0_p*s^0_p etc.) were already computed // in step() and stored in rq_[phase].accum[0]. computeAccum(state, 1); // Set up the common parts of the mass balance equations // for each active phase. const V transi = subset(geo_.transmissibility(), ops_.internal_faces); const std::vector kr = computeRelPerm(state); const std::vector pressures = computePressures(state); for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) { computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], pressures[canph_[phaseIdx]], state); // std::cout << "===== kr[" << phase << "] = \n" << std::endl; // std::cout << kr[phase]; // std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl; // std::cout << rq_[phase].mflux; residual_.material_balance_eq[ phaseIdx ] = pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0]) + ops_.div*rq_[phaseIdx].mflux; // DUMP(ops_.div*rq_[phase].mflux); // DUMP(residual_.material_balance_eq[phase]); } // -------- Extra (optional) rs and rv contributions to the mass balance equations -------- // Add the extra (flux) terms to the mass balance equations // From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv) // The extra terms in the accumulation part of the equation are already handled. if (active_[ Oil ] && active_[ Gas ]) { const int po = fluid_.phaseUsage().phase_pos[ Oil ]; const int pg = fluid_.phaseUsage().phase_pos[ Gas ]; const UpwindSelector upwindOil(grid_, ops_, rq_[po].head.value()); const ADB rs_face = upwindOil.select(state.rs); const UpwindSelector upwindGas(grid_, ops_, rq_[pg].head.value()); const ADB rv_face = upwindGas.select(state.rv); residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux); residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux); // DUMP(residual_.material_balance_eq[ Gas ]); } // Note: updateWellControls() can change all its arguments if // a well control is switched. updateWellControls(state.bhp, state.qs, xw); V aliveWells; addWellEq(state, xw, aliveWells); addWellControlEq(state, xw, aliveWells); } template void FullyImplicitBlackoilSolver::addWellEq(const SolutionState& state, WellStateFullyImplicitBlackoil& xw, V& aliveWells) { if( ! wellsActive() ) return ; const int nc = Opm::AutoDiffGrid::numCells(grid_); const int np = wells().number_of_phases; const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const Opm::PhaseUsage& pu = fluid_.phaseUsage(); V Tw = Eigen::Map(wells().WI, nperf); const std::vector well_cells(wells().well_cells, wells().well_cells + nperf); // pressure diffs computed already (once per step, not changing per iteration) const V& cdp = well_perforation_pressure_diffs_; // Extract variables for perforation cell pressures // and corresponding perforation well pressures. const ADB p_perfcell = subset(state.pressure, well_cells); // DUMPVAL(p_perfcell); // DUMPVAL(state.bhp); // DUMPVAL(ADB::constant(cdp)); // Pressure drawdown (also used to determine direction of flow) const ADB drawdown = p_perfcell - (wops_.w2p * state.bhp + cdp); // current injecting connections auto connInjInx = drawdown.value() < 0; // injector == 1, producer == 0 V isInj = V::Zero(nw); for (int w = 0; w < nw; ++w) { if (wells().type[w] == INJECTOR) { isInj[w] = 1; } } // // A cross-flow connection is defined as a connection which has opposite // // flow-direction to the well total flow // V isInjPerf = (wops_.w2p * isInj); // auto crossFlowConns = (connInjInx != isInjPerf); // bool allowCrossFlow = true; // if (not allowCrossFlow) { // auto closedConns = crossFlowConns; // for (int c = 0; c < nperf; ++c) { // if (closedConns[c]) { // Tw[c] = 0; // } // } // connInjInx = !closedConns; // } // TODO: not allow for crossflow V isInjInx = V::Zero(nperf); V isNotInjInx = V::Zero(nperf); for (int c = 0; c < nperf; ++c){ if (connInjInx[c]) isInjInx[c] = 1; else isNotInjInx[c] = 1; } // HANDLE FLOW INTO WELLBORE // compute phase volumerates standard conditions std::vector cq_ps(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const ADB& wellcell_mob = subset ( rq_[phase].mob, well_cells); const ADB cq_p = -(isNotInjInx * Tw) * (wellcell_mob * drawdown); cq_ps[phase] = subset(rq_[phase].b,well_cells) * cq_p; } if (active_[Oil] && active_[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; ADB cq_psOil = cq_ps[oilpos]; ADB cq_psGas = cq_ps[gaspos]; cq_ps[gaspos] += subset(state.rs,well_cells) * cq_psOil; cq_ps[oilpos] += subset(state.rv,well_cells) * cq_psGas; } // phase rates at std. condtions std::vector q_ps(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { q_ps[phase] = wops_.p2w * cq_ps[phase]; } // total rates at std ADB qt_s = ADB::constant(V::Zero(nw), state.bhp.blockPattern()); for (int phase = 0; phase < np; ++phase) { qt_s += subset(state.qs, Span(nw, 1, phase*nw)); } // compute avg. and total wellbore phase volumetric rates at std. conds const DataBlock compi = Eigen::Map(wells().comp_frac, nw, np); std::vector wbq(np, ADB::null()); ADB wbqt = ADB::constant(V::Zero(nw), state.pressure.blockPattern()); for (int phase = 0; phase < np; ++phase) { const int pos = pu.phase_pos[phase]; wbq[phase] = (isInj * compi.col(pos)) * qt_s - q_ps[phase]; wbqt += wbq[phase]; } // DUMPVAL(wbqt); // check for dead wells aliveWells = V::Constant(nw, 1.0); for (int w = 0; w < nw; ++w) { if (wbqt.value()[w] == 0) { aliveWells[w] = 0.0; } } // compute wellbore mixture at std conds Selector notDeadWells_selector(wbqt.value(), Selector::Zero); std::vector mix_s(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const int pos = pu.phase_pos[phase]; mix_s[phase] = notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt); } // HANDLE FLOW OUT FROM WELLBORE // Total mobilities ADB mt = subset(rq_[0].mob,well_cells); for (int phase = 1; phase < np; ++phase) { mt += subset(rq_[phase].mob,well_cells); } // DUMPVAL(ADB::constant(isInjInx)); // DUMPVAL(ADB::constant(Tw)); // DUMPVAL(mt); // DUMPVAL(drawdown); // injection connections total volumerates ADB cqt_i = -(isInjInx * Tw) * (mt * drawdown); // compute volume ratio between connection at standard conditions ADB volRat = ADB::constant(V::Zero(nperf), state.pressure.blockPattern()); std::vector cmix_s(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { cmix_s[phase] = wops_.w2p * mix_s[phase]; } ADB well_rv = subset(state.rv,well_cells); ADB well_rs = subset(state.rs,well_cells); ADB d = V::Constant(nperf,1.0) - well_rv * well_rs; for (int phase = 0; phase < np; ++phase) { ADB tmp = cmix_s[phase]; if (phase == Oil && active_[Gas]) { const int gaspos = pu.phase_pos[Gas]; tmp = tmp - subset(state.rv,well_cells) * cmix_s[gaspos] / d; } if (phase == Gas && active_[Oil]) { const int oilpos = pu.phase_pos[Oil]; tmp = tmp - subset(state.rs,well_cells) * cmix_s[oilpos] / d; } volRat += tmp / subset(rq_[phase].b,well_cells); } // DUMPVAL(cqt_i); // DUMPVAL(volRat); // injecting connections total volumerates at std cond ADB cqt_is = cqt_i/volRat; // connection phase volumerates at std cond std::vector cq_s(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { cq_s[phase] = cq_ps[phase] + (wops_.w2p * mix_s[phase])*cqt_is; } // DUMPVAL(mix_s[2]); // DUMPVAL(cq_ps[2]); // Add well contributions to mass balance equations for (int phase = 0; phase < np; ++phase) { residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc); } // Add WELL EQUATIONS ADB qs = state.qs; for (int phase = 0; phase < np; ++phase) { qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np); } V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np); for (int phase = 1; phase < np; ++phase) { cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np); } std::vector cq_d(cq.data(), cq.data() + nperf*np); xw.perfPhaseRates() = cq_d; residual_.well_flux_eq = qs; } namespace { double rateToCompare(const ADB& well_phase_flow_rate, const int well, const int num_phases, const double* distr) { const int num_wells = well_phase_flow_rate.size() / num_phases; double rate = 0.0; for (int phase = 0; phase < num_phases; ++phase) { // Important: well_phase_flow_rate is ordered with all rates for first // phase coming first, then all for second phase etc. rate += well_phase_flow_rate.value()[well + phase*num_wells] * distr[phase]; } return rate; } bool constraintBroken(const ADB& bhp, const ADB& well_phase_flow_rate, const int well, const int num_phases, const WellType& well_type, const WellControls* wc, const int ctrl_index) { const WellControlType ctrl_type = well_controls_iget_type(wc, ctrl_index); const double target = well_controls_iget_target(wc, ctrl_index); const double* distr = well_controls_iget_distr(wc, ctrl_index); bool broken = false; switch (well_type) { case INJECTOR: { switch (ctrl_type) { case BHP: broken = bhp.value()[well] > target; break; case RESERVOIR_RATE: // Intentional fall-through case SURFACE_RATE: broken = rateToCompare(well_phase_flow_rate, well, num_phases, distr) > target; break; } } break; case PRODUCER: { switch (ctrl_type) { case BHP: broken = bhp.value()[well] < target; break; case RESERVOIR_RATE: // Intentional fall-through case SURFACE_RATE: // Note that the rates compared below are negative, // so breaking the constraints means: too high flow rate // (as for injection). broken = rateToCompare(well_phase_flow_rate, well, num_phases, distr) < target; break; } } break; default: OPM_THROW(std::logic_error, "Can only handle INJECTOR and PRODUCER wells."); } return broken; } } // anonymous namespace template void FullyImplicitBlackoilSolver::updateWellControls(ADB& bhp, ADB& well_phase_flow_rate, WellStateFullyImplicitBlackoil& xw) const { if( ! wellsActive() ) return ; std::string modestring[3] = { "BHP", "RESERVOIR_RATE", "SURFACE_RATE" }; // Find, for each well, if any constraints are broken. If so, // switch control to first broken constraint. const int np = wells().number_of_phases; const int nw = wells().number_of_wells; bool bhp_changed = false; bool rates_changed = false; for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. const int current = xw.currentControls()[w]; // Loop over all controls except the current one, and also // skip any RESERVOIR_RATE controls, since we cannot // handle those. const int nwc = well_controls_get_num(wc); int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (ctrl_index == current) { // This is the currently used control, so it is // used as an equation. So this is not used as an // inequality constraint, and therefore skipped. continue; } if (constraintBroken(bhp, well_phase_flow_rate, w, np, wells().type[w], wc, ctrl_index)) { // ctrl_index will be the index of the broken constraint after the loop. break; } } if (ctrl_index != nwc) { // Constraint number ctrl_index was broken, switch to it. std::cout << "Switching control mode for well " << wells().name[w] << " from " << modestring[well_controls_iget_type(wc, current)] << " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl; xw.currentControls()[w] = ctrl_index; // Also updating well state and primary variables. // We can only be switching to BHP and SURFACE_RATE // controls since we do not support RESERVOIR_RATE. const double target = well_controls_iget_target(wc, ctrl_index); const double* distr = well_controls_iget_distr(wc, ctrl_index); switch (well_controls_iget_type(wc, ctrl_index)) { case BHP: xw.bhp()[w] = target; bhp_changed = true; break; case RESERVOIR_RATE: // No direct change to any observable quantity at // surface condition. In this case, use existing // flow rates as initial conditions as reservoir // rate acts only in aggregate. // // Just record the fact that we need to recompute // the 'well_phase_flow_rate'. rates_changed = true; break; case SURFACE_RATE: for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { xw.wellRates()[np*w + phase] = target * distr[phase]; } } rates_changed = true; break; } } } // Update primary variables, if necessary. if (bhp_changed) { ADB::V new_bhp = Eigen::Map(xw.bhp().data(), nw); bhp = ADB::function(new_bhp, bhp.derivative()); } if (rates_changed) { // Need to reshuffle well rates, from phase running fastest // to wells running fastest. // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(xw.wellRates().data(), nw, np).transpose(); const ADB::V new_qs = Eigen::Map(wrates.data(), nw*np); well_phase_flow_rate = ADB::function(new_qs, well_phase_flow_rate.derivative()); } } template void FullyImplicitBlackoilSolver::addWellControlEq(const SolutionState& state, const WellStateFullyImplicitBlackoil& xw, const V& aliveWells) { if( ! wellsActive() ) return; const int np = wells().number_of_phases; const int nw = wells().number_of_wells; V bhp_targets = V::Zero(nw); V rate_targets = V::Zero(nw); M rate_distr(nw, np*nw); for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. const int current = xw.currentControls()[w]; switch (well_controls_iget_type(wc, current)) { case BHP: { bhp_targets (w) = well_controls_iget_target(wc, current); rate_targets(w) = -1e100; } break; case RESERVOIR_RATE: // Intentional fall-through case SURFACE_RATE: { // RESERVOIR and SURFACE rates look the same, from a // high-level point of view, in the system of // simultaneous linear equations. const double* const distr = well_controls_iget_distr(wc, current); for (int p = 0; p < np; ++p) { rate_distr.insert(w, p*nw + w) = distr[p]; } bhp_targets (w) = -1.0e100; rate_targets(w) = well_controls_iget_target(wc, current); } break; } } const ADB bhp_residual = state.bhp - bhp_targets; const ADB rate_residual = rate_distr * state.qs - rate_targets; // Choose bhp residual for positive bhp targets. Selector bhp_selector(bhp_targets); residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual); // For wells that are dead (not flowing), and therefore not communicating // with the reservoir, we set the equation to be equal to the well's total // flow. This will be a solution only if the target rate is also zero. M rate_summer(nw, np*nw); for (int w = 0; w < nw; ++w) { for (int phase = 0; phase < np; ++phase) { rate_summer.insert(w, phase*nw + w) = 1.0; } } Selector alive_selector(aliveWells, Selector::NotEqualZero); residual_.well_eq = alive_selector.select(residual_.well_eq, rate_summer * state.qs); // DUMP(residual_.well_eq); } template V FullyImplicitBlackoilSolver::solveJacobianSystem() const { return linsolver_.computeNewtonIncrement(residual_); } namespace { struct Chop01 { double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); } }; double infinityNorm( const ADB& a ) { if( a.value().size() > 0 ) { return a.value().matrix().lpNorm (); } else { // this situation can occur when no wells are present return 0.0; } } } template void FullyImplicitBlackoilSolver::updateState(const V& dx, BlackoilState& state, WellStateFullyImplicitBlackoil& well_state) { using namespace Opm::AutoDiffGrid; const int np = fluid_.numPhases(); const int nc = numCells(grid_); const int nw = wellsActive() ? wells().number_of_wells : 0; const V null; assert(null.size() == 0); const V zero = V::Zero(nc); const V one = V::Constant(nc, 1.0); const SolutionState sol_state_old = constantState(state, well_state); const std::vector pressures_old = computePressures(sol_state_old); // store cell status in vectors V isRs = V::Zero(nc,1); V isRv = V::Zero(nc,1); V isSg = V::Zero(nc,1); if (active_[Gas]) { for (int c = 0; c < nc; ++c) { switch (primalVariable_[c]) { case PrimalVariables::RS: isRs[c] = 1; break; case PrimalVariables::RV: isRv[c] = 1; break; default: isSg[c] = 1; break; } } } // Extract parts of dx corresponding to each part. const V dp = subset(dx, Span(nc)); int varstart = nc; const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dsw.size(); const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null; varstart += dxvar.size(); const V dqs = subset(dx, Span(np*nw, 1, varstart)); varstart += dqs.size(); const V dbhp = subset(dx, Span(nw, 1, varstart)); varstart += dbhp.size(); assert(varstart == dx.size()); // Pressure update. const double dpmaxrel = dpMaxRel(); const V p_old = Eigen::Map(&state.pressure()[0], nc, 1); const V absdpmax = dpmaxrel*p_old.abs(); const V dp_limited = sign(dp) * dp.abs().min(absdpmax); const V p = (p_old - dp_limited).max(zero); std::copy(&p[0], &p[0] + nc, state.pressure().begin()); // Saturation updates. const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s_old = Eigen::Map(& state.saturation()[0], nc, np); const double dsmax = dsMax(); V so; V sw; V sg; { V maxVal = zero; V dso = zero; if (active_[Water]){ maxVal = dsw.abs().max(maxVal); dso = dso - dsw; } V dsg; if (active_[Gas]){ dsg = isSg * dxvar - isRv * dsw; maxVal = dsg.abs().max(maxVal); dso = dso - dsg; } maxVal = dso.abs().max(maxVal); V step = dsmax/maxVal; step = step.min(1.); if (active_[Water]) { const int pos = pu.phase_pos[ Water ]; const V sw_old = s_old.col(pos); sw = sw_old - step * dsw; } if (active_[Gas]) { const int pos = pu.phase_pos[ Gas ]; const V sg_old = s_old.col(pos); sg = sg_old - step * dsg; } const int pos = pu.phase_pos[ Oil ]; const V so_old = s_old.col(pos); so = so_old - step * dso; } // Appleyard chop process. auto ixg = sg < 0; for (int c = 0; c < nc; ++c) { if (ixg[c]) { sw[c] = sw[c] / (1-sg[c]); so[c] = so[c] / (1-sg[c]); sg[c] = 0; } } auto ixo = so < 0; for (int c = 0; c < nc; ++c) { if (ixo[c]) { sw[c] = sw[c] / (1-so[c]); sg[c] = sg[c] / (1-so[c]); so[c] = 0; } } auto ixw = sw < 0; for (int c = 0; c < nc; ++c) { if (ixw[c]) { so[c] = so[c] / (1-sw[c]); sg[c] = sg[c] / (1-sw[c]); sw[c] = 0; } } const V sumSat = sw + so + sg; sw = sw / sumSat; so = so / sumSat; sg = sg / sumSat; // Update the state for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c]; } for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c]; } if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = so[c]; } } // Update rs and rv const double drmaxrel = drMaxRel(); V rs; if (has_disgas_) { const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); const V drs = isRs * dxvar; const V drs_limited = sign(drs) * drs.abs().min(rs_old.abs()*drmaxrel); rs = rs_old - drs_limited; } V rv; if (has_vapoil_) { const V rv_old = Eigen::Map(&state.rv()[0], nc); const V drv = isRv * dxvar; const V drv_limited = sign(drv) * drv.abs().min(rv_old.abs()*drmaxrel); rv = rv_old - drv_limited; } // Sg is used as primal variable for water only cells. const double epsilon = std::sqrt(std::numeric_limits::epsilon()); auto watOnly = sw > (1 - epsilon); // phase translation sg <-> rs std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg); if (has_disgas_) { const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_); const V rsSat = fluidRsSat(p, so, cells_); // The obvious case auto hasGas = (sg > 0 && isRs == 0); // Set oil saturated if previous rs is sufficiently large const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) ); auto useSg = watOnly || hasGas || gasVaporized; for (int c = 0; c < nc; ++c) { if (useSg[c]) { rs[c] = rsSat[c]; } else { primalVariable_[c] = PrimalVariables::RS; } } } // phase transitions so <-> rv if (has_vapoil_) { // The gas pressure is needed for the rvSat calculations const SolutionState sol_state = constantState(state, well_state); const std::vector pressures = computePressures(sol_state); const V rvSat0 = fluidRvSat(pressures_old[ Gas ].value(), s_old.col(pu.phase_pos[Oil]), cells_); const V rvSat = fluidRvSat(pressures[ Gas ].value(), so, cells_); // The obvious case auto hasOil = (so > 0 && isRv == 0); // Set oil saturated if previous rv is sufficiently large const V rv_old = Eigen::Map(&state.rv()[0], nc); auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) ); auto useSg = watOnly || hasOil || oilCondensed; for (int c = 0; c < nc; ++c) { if (useSg[c]) { rv[c] = rvSat[c]; } else { primalVariable_[c] = PrimalVariables::RV; } } } // Update the state if (has_disgas_) { std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin()); } if (has_vapoil_) { std::copy(&rv[0], &rv[0] + nc, state.rv().begin()); } if( wellsActive() ) { // Qs update. // Since we need to update the wellrates, that are ordered by wells, // from dqs which are ordered by phase, the simplest is to compute // dwr, which is the data from dqs but ordered by wells. const DataBlock wwr = Eigen::Map(dqs.data(), np, nw).transpose(); const V dwr = Eigen::Map(wwr.data(), nw*np); const V wr_old = Eigen::Map(&well_state.wellRates()[0], nw*np); const V wr = wr_old - dwr; std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin()); // Bhp update. const V bhp_old = Eigen::Map(&well_state.bhp()[0], nw, 1); const V dbhp_limited = sign(dbhp) * dbhp.abs().min(bhp_old.abs()*dpmaxrel); const V bhp = bhp_old - dbhp_limited; std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin()); } // Update phase conditions used for property calculations. updatePhaseCondFromPrimalVariable(); } template std::vector FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state) const { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : null); const ADB so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : null); const ADB sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : null); return fluid_.relperm(sw, so, sg, cells_); } template std::vector FullyImplicitBlackoilSolver::computePressures(const SolutionState& state) const { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : null); const ADB& so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : null); const ADB& sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : null); return computePressures(state.pressure, sw, so, sg); } template std::vector FullyImplicitBlackoilSolver:: computePressures(const ADB& po, const ADB& sw, const ADB& so, const ADB& sg) const { // convert the pressure offsets to the capillary pressures std::vector pressure = fluid_.capPress(sw, so, sg, cells_); for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) { // The reference pressure is always the liquid phase (oil) pressure. if (phaseIdx == BlackoilPhases::Liquid) continue; pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid]; } // Since pcow = po - pw, but pcog = pg - po, // we have // pw = po - pcow // pg = po + pcgo // This is an unfortunate inconsistency, but a convention we must handle. for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) { if (phaseIdx == BlackoilPhases::Aqua) { pressure[phaseIdx] = po - pressure[phaseIdx]; } else { pressure[phaseIdx] += po; } } return pressure; } template std::vector FullyImplicitBlackoilSolver::computeRelPermWells(const SolutionState& state, const DataBlock& well_s, const std::vector& well_cells) const { const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nperf), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat) : null); const ADB so = (active_[ Oil ] ? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat) : null); const ADB sg = (active_[ Gas ] ? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat) : null); return fluid_.relperm(sw, so, sg, well_cells); } template void FullyImplicitBlackoilSolver::computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& phasePressure, const SolutionState& state) { const int canonicalPhaseIdx = canph_[ actph ]; const std::vector cond = phaseCondition(); const ADB tr_mult = transMult(state.pressure); const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_); rq_[ actph ].mob = tr_mult * kr / mu; const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_); ADB& head = rq_[ actph ].head; // compute gravity potensial using the face average as in eclipse and MRST const ADB rhoavg = ops_.caver * rho; ADB dp = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix())); if (use_threshold_pressure_) { applyThresholdPressures(dp); } head = transi*dp; //head = transi*(ops_.ngrad * phasePressure) + gflux; UpwindSelector upwind(grid_, ops_, head.value()); const ADB& b = rq_[ actph ].b; const ADB& mob = rq_[ actph ].mob; rq_[ actph ].mflux = upwind.select(b * mob) * head; // DUMP(rq_[ actph ].mob); // DUMP(rq_[ actph ].mflux); } template void FullyImplicitBlackoilSolver::applyThresholdPressures(ADB& dp) { // We support reversible threshold pressures only. // Method: if the potential difference is lower (in absolute // value) than the threshold for any face, then the potential // (and derivatives) is set to zero. If it is above the // threshold, the threshold pressure is subtracted from the // absolute potential (the potential is moved towards zero). // Identify the set of faces where the potential is under the // threshold, that shall have zero flow. Storing the bool // Array as a V (a double Array) with 1 and 0 elements, a // 1 where flow is allowed, a 0 where it is not. const V high_potential = (dp.value().abs() >= threshold_pressures_by_interior_face_).template cast(); // Create a sparse vector that nullifies the low potential elements. const M keep_high_potential = spdiag(high_potential); // Find the current sign for the threshold modification const V sign_dp = sign(dp.value()); const V threshold_modification = sign_dp * threshold_pressures_by_interior_face_; // Modify potential and nullify where appropriate. dp = keep_high_potential * (dp - threshold_modification); } template double FullyImplicitBlackoilSolver::residualNorm() const { double globalNorm = 0; std::vector::const_iterator quantityIt = residual_.material_balance_eq.begin(); const std::vector::const_iterator endQuantityIt = residual_.material_balance_eq.end(); for (; quantityIt != endQuantityIt; ++quantityIt) { const double quantityResid = (*quantityIt).value().matrix().norm(); if (!std::isfinite(quantityResid)) { const int trouble_phase = quantityIt - residual_.material_balance_eq.begin(); OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual in material balance equation " << trouble_phase); } globalNorm = std::max(globalNorm, quantityResid); } globalNorm = std::max(globalNorm, residual_.well_flux_eq.value().matrix().norm()); globalNorm = std::max(globalNorm, residual_.well_eq.value().matrix().norm()); return globalNorm; } template std::vector FullyImplicitBlackoilSolver::computeResidualNorms() const { std::vector residualNorms; std::vector::const_iterator massBalanceIt = residual_.material_balance_eq.begin(); const std::vector::const_iterator endMassBalanceIt = residual_.material_balance_eq.end(); for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) { const double massBalanceResid = infinityNorm( (*massBalanceIt) ); if (!std::isfinite(massBalanceResid)) { OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual"); } residualNorms.push_back(massBalanceResid); } // the following residuals are not used in the oscillation detection now const double wellFluxResid = infinityNorm( residual_.well_flux_eq ); if (!std::isfinite(wellFluxResid)) { OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual"); } residualNorms.push_back(wellFluxResid); const double wellResid = infinityNorm( residual_.well_eq ); if (!std::isfinite(wellResid)) { OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual"); } residualNorms.push_back(wellResid); return residualNorms; } template void FullyImplicitBlackoilSolver::detectNewtonOscillations(const std::vector>& residual_history, const int it, const double relaxRelTol, bool& oscillate, bool& stagnate) const { // The detection of oscillation in two primary variable results in the report of the detection // of oscillation for the solver. // Only the saturations are used for oscillation detection for the black oil model. // Stagnate is not used for any treatment here. if ( it < 2 ) { oscillate = false; stagnate = false; return; } stagnate = true; int oscillatePhase = 0; const std::vector& F0 = residual_history[it]; const std::vector& F1 = residual_history[it - 1]; const std::vector& F2 = residual_history[it - 2]; for (int p= 0; p < fluid_.numPhases(); ++p){ const double d1 = std::abs((F0[p] - F2[p]) / F0[p]); const double d2 = std::abs((F0[p] - F1[p]) / F0[p]); oscillatePhase += (d1 < relaxRelTol) && (relaxRelTol < d2); // Process is 'stagnate' unless at least one phase // exhibits significant residual change. stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3)); } oscillate = (oscillatePhase > 1); } template void FullyImplicitBlackoilSolver::stablizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const { // The dxOld is updated with dx. // If omega is equal to 1., no relaxtion will be appiled. const V tempDxOld = dxOld; dxOld = dx; switch (relax_type) { case DAMPEN: if (omega == 1.) { return; } dx = dx*omega; return; case SOR: if (omega == 1.) { return; } dx = dx*omega + (1.-omega)*tempDxOld; return; default: OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type."); } return; } template bool FullyImplicitBlackoilSolver::getConvergence(const double dt, const int iteration) { const double tol_mb = 1.0e-7; const double tol_cnv = 1.0e-3; const int nc = Opm::AutoDiffGrid::numCells(grid_); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const V pv = geo_.poreVolume(); const double pvSum = pv.sum(); const std::vector cond = phaseCondition(); double CNVW = 0.; double CNVO = 0.; double CNVG = 0.; double RW_sum = 0.; double RO_sum = 0.; double RG_sum = 0.; double BW_avg = 0.; double BO_avg = 0.; double BG_avg = 0.; if (active_[Water]) { const int pos = pu.phase_pos[Water]; const ADB& tempBW = rq_[pos].b; V BW = 1./tempBW.value(); V RW = residual_.material_balance_eq[Water].value(); BW_avg = BW.sum()/nc; const V tempV = RW.abs()/pv; CNVW = BW_avg * dt * tempV.maxCoeff(); RW_sum = RW.sum(); } if (active_[Oil]) { // Omit the disgas here. We should add it. const int pos = pu.phase_pos[Oil]; const ADB& tempBO = rq_[pos].b; V BO = 1./tempBO.value(); V RO = residual_.material_balance_eq[Oil].value(); BO_avg = BO.sum()/nc; const V tempV = RO.abs()/pv; CNVO = BO_avg * dt * tempV.maxCoeff(); RO_sum = RO.sum(); } if (active_[Gas]) { // Omit the vapoil here. We should add it. const int pos = pu.phase_pos[Gas]; const ADB& tempBG = rq_[pos].b; V BG = 1./tempBG.value(); V RG = residual_.material_balance_eq[Gas].value(); BG_avg = BG.sum()/nc; const V tempV = RG.abs()/pv; CNVG = BG_avg * dt * tempV.maxCoeff(); RG_sum = RG.sum(); } const double mass_balance_residual_water = std::abs(BW_avg*RW_sum) * dt / pvSum; const double mass_balance_residual_oil = std::abs(BO_avg*RO_sum) * dt / pvSum; const double mass_balance_residual_gas = std::abs(BG_avg*RG_sum) * dt / pvSum; bool converged_MB = (mass_balance_residual_water < tol_mb) && (mass_balance_residual_oil < tol_mb) && (mass_balance_residual_gas < tol_mb); bool converged_CNV = (CNVW < tol_cnv) && (CNVO < tol_cnv) && (CNVG < tol_cnv); const double residualWellFlux = infinityNorm( residual_.well_flux_eq ); const double residualWell = infinityNorm( residual_.well_eq ); bool converged_Well = (residualWellFlux < 1./Opm::unit::day) && (residualWell < Opm::unit::barsa); bool converged = converged_MB && converged_CNV && converged_Well; // if one of the residuals is NaN, throw exception, so that the solver can be restarted if( std::isnan(mass_balance_residual_water) || mass_balance_residual_water > maxResidualAllowed() || std::isnan(mass_balance_residual_oil) || mass_balance_residual_oil > maxResidualAllowed() || std::isnan(mass_balance_residual_gas) || mass_balance_residual_gas > maxResidualAllowed() || std::isnan(CNVW) || CNVW > maxResidualAllowed() || std::isnan(CNVO) || CNVO > maxResidualAllowed() || std::isnan(CNVG) || CNVG > maxResidualAllowed() || std::isnan(residualWellFlux) || residualWellFlux > maxResidualAllowed() || std::isnan(residualWell) || residualWell > maxResidualAllowed() ) { OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or to large!"); } if (iteration == 0) { std::cout << "\nIter MB(OIL) MB(WATER) MB(GAS) CNVW CNVO CNVG WELL-FLOW WELL-CNTRL\n"; } const std::streamsize oprec = std::cout.precision(3); const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific); std::cout << std::setw(4) << iteration << std::setw(11) << mass_balance_residual_water << std::setw(11) << mass_balance_residual_oil << std::setw(11) << mass_balance_residual_gas << std::setw(11) << CNVW << std::setw(11) << CNVO << std::setw(11) << CNVG << std::setw(11) << residualWellFlux << std::setw(11) << residualWell << std::endl; std::cout.precision(oprec); std::cout.flags(oflags); return converged; } template ADB FullyImplicitBlackoilSolver::fluidViscosity(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { switch (phase) { case Water: return fluid_.muWat(p, temp, cells); case Oil: { return fluid_.muOil(p, temp, rs, cond, cells); } case Gas: return fluid_.muGas(p, temp, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } template ADB FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { switch (phase) { case Water: return fluid_.bWat(p, temp, cells); case Oil: { return fluid_.bOil(p, temp, rs, cond, cells); } case Gas: return fluid_.bGas(p, temp, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } template ADB FullyImplicitBlackoilSolver::fluidDensity(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { const double* rhos = fluid_.surfaceDensity(); ADB b = fluidReciprocFVF(phase, p, temp, rs, rv, cond, cells); ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b; if (phase == Oil && active_[Gas]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b; } if (phase == Gas && active_[Oil]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b; } return rho; } template V FullyImplicitBlackoilSolver::fluidRsSat(const V& p, const V& satOil, const std::vector& cells) const { return fluid_.rsSat(p, satOil, cells); } template ADB FullyImplicitBlackoilSolver::fluidRsSat(const ADB& p, const ADB& satOil, const std::vector& cells) const { return fluid_.rsSat(p, satOil, cells); } template V FullyImplicitBlackoilSolver::fluidRvSat(const V& p, const V& satOil, const std::vector& cells) const { return fluid_.rvSat(p, satOil, cells); } template ADB FullyImplicitBlackoilSolver::fluidRvSat(const ADB& p, const ADB& satOil, const std::vector& cells) const { return fluid_.rvSat(p, satOil, cells); } template ADB FullyImplicitBlackoilSolver::poroMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V pm(n); V dpm(n); for (int i = 0; i < n; ++i) { pm[i] = rock_comp_props_->poroMult(p.value()[i]); dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]); } ADB::M dpm_diag = spdiag(dpm); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]); } return ADB::function(pm, jacs); } else { return ADB::constant(V::Constant(n, 1.0), p.blockPattern()); } } template ADB FullyImplicitBlackoilSolver::transMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V tm(n); V dtm(n); for (int i = 0; i < n; ++i) { tm[i] = rock_comp_props_->transMult(p.value()[i]); dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]); } ADB::M dtm_diag = spdiag(dtm); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]); } return ADB::function(tm, jacs); } else { return ADB::constant(V::Constant(n, 1.0), p.blockPattern()); } } /* template void FullyImplicitBlackoilSolver:: classifyCondition(const SolutionState& state, std::vector& cond ) const { const PhaseUsage& pu = fluid_.phaseUsage(); if (active_[ Gas ]) { // Oil/Gas or Water/Oil/Gas system const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; const V& so = state.saturation[ po ].value(); const V& sg = state.saturation[ pg ].value(); cond.resize(sg.size()); for (V::Index c = 0, e = sg.size(); c != e; ++c) { if (so[c] > 0) { cond[c].setFreeOil (); } if (sg[c] > 0) { cond[c].setFreeGas (); } if (active_[ Water ]) { cond[c].setFreeWater(); } } } else { // Water/Oil system assert (active_[ Water ]); const int po = pu.phase_pos[ Oil ]; const V& so = state.saturation[ po ].value(); cond.resize(so.size()); for (V::Index c = 0, e = so.size(); c != e; ++c) { cond[c].setFreeWater(); if (so[c] > 0) { cond[c].setFreeOil(); } } } } */ template void FullyImplicitBlackoilSolver::classifyCondition(const BlackoilState& state) { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const int np = state.numPhases(); const PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np); if (active_[ Gas ]) { // Oil/Gas or Water/Oil/Gas system const V so = s.col(pu.phase_pos[ Oil ]); const V sg = s.col(pu.phase_pos[ Gas ]); for (V::Index c = 0, e = sg.size(); c != e; ++c) { if (so[c] > 0) { phaseCondition_[c].setFreeOil (); } if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); } if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); } } } else { // Water/Oil system assert (active_[ Water ]); const V so = s.col(pu.phase_pos[ Oil ]); for (V::Index c = 0, e = so.size(); c != e; ++c) { phaseCondition_[c].setFreeWater(); if (so[c] > 0) { phaseCondition_[c].setFreeOil(); } } } } template void FullyImplicitBlackoilSolver::updatePrimalVariableFromState(const BlackoilState& state) { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const int np = state.numPhases(); const PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np); // Water/Oil/Gas system assert (active_[ Gas ]); // reset the primary variables if RV and RS is not set Sg is used as primary variable. primalVariable_.resize(nc); std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg); const V sg = s.col(pu.phase_pos[ Gas ]); const V so = s.col(pu.phase_pos[ Oil ]); const V sw = s.col(pu.phase_pos[ Water ]); const double epsilon = std::sqrt(std::numeric_limits::epsilon()); auto watOnly = sw > (1 - epsilon); auto hasOil = so > 0; auto hasGas = sg > 0; // For oil only cells Rs is used as primal variable. For cells almost full of water // the default primal variable (Sg) is used. if (has_disgas_) { for (V::Index c = 0, e = sg.size(); c != e; ++c) { if ( !watOnly[c] && hasOil[c] && !hasGas[c] ) {primalVariable_[c] = PrimalVariables::RS; } } } // For gas only cells Rv is used as primal variable. For cells almost full of water // the default primal variable (Sg) is used. if (has_vapoil_) { for (V::Index c = 0, e = so.size(); c != e; ++c) { if ( !watOnly[c] && hasGas[c] && !hasOil[c] ) {primalVariable_[c] = PrimalVariables::RV; } } } updatePhaseCondFromPrimalVariable(); } /// Update the phaseCondition_ member based on the primalVariable_ member. template void FullyImplicitBlackoilSolver::updatePhaseCondFromPrimalVariable() { if (! active_[Gas]) { OPM_THROW(std::logic_error, "updatePhaseCondFromPrimarVariable() logic requires active gas phase."); } const int nc = primalVariable_.size(); for (int c = 0; c < nc; ++c) { phaseCondition_[c] = PhasePresence(); // No free phases. phaseCondition_[c].setFreeWater(); // Not necessary for property calculation usage. switch (primalVariable_[c]) { case PrimalVariables::Sg: phaseCondition_[c].setFreeOil(); phaseCondition_[c].setFreeGas(); break; case PrimalVariables::RS: phaseCondition_[c].setFreeOil(); break; case PrimalVariables::RV: phaseCondition_[c].setFreeGas(); break; default: OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << c << ": " << primalVariable_[c]); } } } } // namespace Opm