/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { WellInterfaceGeneric::WellInterfaceGeneric(const Well& well, const ParallelWellInfo& pw_info, const int time_step, const int pvtRegionIdx, const int num_components, const int num_phases, const int index_of_well, const std::vector& perf_data) : well_ecl_(well) , parallel_well_info_(pw_info) , current_step_(time_step) , pvtRegionIdx_(pvtRegionIdx) , num_components_(num_components) , number_of_phases_(num_phases) , index_of_well_(index_of_well) , perf_data_(&perf_data) , ipr_a_(num_components) , ipr_b_(num_components) { assert(well.name()==pw_info.name()); assert(std::is_sorted(perf_data.begin(), perf_data.end(), [](const auto& perf1, const auto& perf2){ return perf1.ecl_index < perf2.ecl_index; })); if (time_step < 0) { OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface"); } ref_depth_ = well.getRefDepth(); // We do not want to count SHUT perforations here, so // it would be wrong to use wells.getConnections().size(). number_of_perforations_ = perf_data.size(); // perforations related { well_cells_.resize(number_of_perforations_); well_index_.resize(number_of_perforations_); saturation_table_number_.resize(number_of_perforations_); int perf = 0; for (const auto& pd : perf_data) { well_cells_[perf] = pd.cell_index; well_index_[perf] = pd.connection_transmissibility_factor; saturation_table_number_[perf] = pd.satnum_id; ++perf; } } // initialization of the completions mapping initCompletions(); well_efficiency_factor_ = 1.0; this->wellStatus_ = Well::Status::OPEN; if (well.getStatus() == Well::Status::STOP) { this->wellStatus_ = Well::Status::STOP; } wsolvent_ = 0.0; well_control_log_.clear(); } // Currently the VFP calculations requires three-phase input data, see // the documentation for keyword VFPPROD and its implementation in // VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy // value in VFPPROD record 5 (GFR values) and supplying a dummy input value // for the gas rate to the methods in VFPProdProperties.cpp, we can extend // the VFP calculations to the two-phase oil-water case. void WellInterfaceGeneric::adaptRatesForVFP(std::vector& rates) const { const auto& pu = this->phaseUsage(); if (pu.num_phases == 2) { if ( pu.phase_used[BlackoilPhases::Aqua] == 1 && pu.phase_used[BlackoilPhases::Liquid] == 1 && pu.phase_used[BlackoilPhases::Vapour] == 0) { assert(rates.size() == 2); rates.push_back(0.0); // set gas rate to zero } else { throw std::logic_error("Two-phase VFP calculation only " "supported for oil and water"); } } } const std::vector& WellInterfaceGeneric::perforationData() const { return *perf_data_; } const std::string& WellInterfaceGeneric::name() const { return well_ecl_.name(); } bool WellInterfaceGeneric::isInjector() const { return well_ecl_.isInjector(); } bool WellInterfaceGeneric::isProducer() const { return well_ecl_.isProducer(); } int WellInterfaceGeneric::indexOfWell() const { return index_of_well_; } bool WellInterfaceGeneric::getAllowCrossFlow() const { return well_ecl_.getAllowCrossFlow(); } const Well& WellInterfaceGeneric::wellEcl() const { return well_ecl_; } const PhaseUsage& WellInterfaceGeneric::phaseUsage() const { assert(phase_usage_ != nullptr); return *phase_usage_; } double WellInterfaceGeneric::wsolvent() const { return wsolvent_; } double WellInterfaceGeneric::rsRvInj() const { return well_ecl_.getInjectionProperties().rsRvInj; } bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const { if (dynamic_thp_limit_) { return true; } if (well_ecl_.isInjector()) { const auto controls = well_ecl_.injectionControls(summaryState); if (controls.hasControl(Well::InjectorCMode::THP)) return true; } if (well_ecl_.isProducer( )) { const auto controls = well_ecl_.productionControls(summaryState); if (controls.hasControl(Well::ProducerCMode::THP)) return true; } return false; } double WellInterfaceGeneric::mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const { if (well_ecl_.isInjector()) { const auto& controls = well_ecl_.injectionControls(summaryState); return controls.bhp_limit; } if (well_ecl_.isProducer( )) { const auto& controls = well_ecl_.productionControls(summaryState); return controls.bhp_limit; } return 0.0; } double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const { if (dynamic_thp_limit_) { return *dynamic_thp_limit_; } if (well_ecl_.isInjector()) { const auto& controls = well_ecl_.injectionControls(summaryState); return controls.thp_limit; } if (well_ecl_.isProducer( )) { const auto& controls = well_ecl_.productionControls(summaryState); return controls.thp_limit; } return 0.0; } bool WellInterfaceGeneric::underPredictionMode() const { return well_ecl_.predictionMode(); } void WellInterfaceGeneric::initCompletions() { assert(completions_.empty() ); const WellConnections& connections = well_ecl_.getConnections(); const std::size_t num_conns = connections.size(); int num_active_connections = 0; auto my_next_perf = perf_data_->begin(); for (std::size_t c = 0; c < num_conns; ++c) { if (my_next_perf == perf_data_->end()) { break; } if (my_next_perf->ecl_index > c) { continue; } assert(my_next_perf->ecl_index == c); if (connections[c].state() == Connection::State::OPEN) { completions_[connections[c].complnum()].push_back(num_active_connections++); } ++my_next_perf; } assert(my_next_perf == perf_data_->end()); } void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState) { const auto& connections = well_ecl_.getConnections(); int perfIdx = 0; for (const auto& connection : connections) { if (connection.state() == Connection::State::OPEN) { if (wellTestState.completion_is_closed(name(), connection.complnum())) { this->well_index_[perfIdx] = 0.0; } perfIdx++; } } } void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg) { vfp_properties_ = vfp_properties_arg; } void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg) { guide_rate_ = guide_rate_arg; } void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor) { well_efficiency_factor_ = efficiency_factor; } void WellInterfaceGeneric::setRepRadiusPerfLength() { const int nperf = number_of_perforations_; perf_rep_radius_.clear(); perf_length_.clear(); bore_diameters_.clear(); perf_rep_radius_.reserve(nperf); perf_length_.reserve(nperf); bore_diameters_.reserve(nperf); const WellConnections& connections = well_ecl_.getConnections(); const std::size_t num_conns = connections.size(); int num_active_connections = 0; auto my_next_perf = perf_data_->begin(); for (std::size_t c = 0; c < num_conns; ++c) { if (my_next_perf == perf_data_->end()) { break; } if (my_next_perf->ecl_index > c) { continue; } assert(my_next_perf->ecl_index == c); const auto& connection = connections[c]; if (connection.state() == Connection::State::OPEN) { double radius = connection.rw(); double re = connection.re(); // area equivalent radius of the grid block double perf_length = connection.connectionLength(); // the length of the well perforation const double repR = std::sqrt(re * radius); perf_rep_radius_.push_back(repR); perf_length_.push_back(perf_length); bore_diameters_.push_back(2. * radius); num_active_connections++; } ++my_next_perf; } assert(my_next_perf == perf_data_->end()); assert(num_active_connections == nperf); } void WellInterfaceGeneric::setWsolvent(const double wsolvent) { wsolvent_ = wsolvent; } void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit) { dynamic_thp_limit_ = thp_limit; } void WellInterfaceGeneric::updatePerforatedCell(std::vector& is_cell_perforated) { for (int perf_idx = 0; perf_idxgetProd()->hasTable(table_id)) { return true; } else { OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specified," << " for well " << name() << ", while we could not access it during simulation", deferred_logger); } } } else { // injector const int table_id = well_ecl_.vfp_table_number(); if (table_id <= 0) { return false; } else { if (vfp_properties_->getInj()->hasTable(table_id)) { return true; } else { OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specified," << " for well " << name() << ", while we could not access it during simulation", deferred_logger); } } } } void WellInterfaceGeneric::updateWellTestStatePhysical(const double simulation_time, const bool write_message_to_opmlog, WellTestState& well_test_state, DeferredLogger& deferred_logger) const { if (!isOperableAndSolvable()) { if (well_test_state.well_is_closed(name())) { // Already closed, do nothing. } else { well_test_state.close_well(name(), WellTestConfig::Reason::PHYSICAL, simulation_time); if (write_message_to_opmlog) { const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped"; const std::string msg = "Well " + name() + " will be " + action + " as it can not operate under current reservoir conditions."; deferred_logger.info(msg); } } } } bool WellInterfaceGeneric::isOperableAndSolvable() const { return operability_status_.isOperableAndSolvable(); } double WellInterfaceGeneric::getALQ(const WellState& well_state) const { return well_state.getALQ(name()); } void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const { if (well_control_log_.empty()) return; std::string msg = " Well " + name() + " control mode changed from "; for (const std::string& from : well_control_log_) { msg += from + "->"; } std::string to; if (isInjector()) { to = Well::InjectorCMode2String(ws.injection_cmode); } else { to = Well::ProducerCMode2String(ws.production_cmode); } msg += to; deferred_logger.info(msg); } std::optional WellInterfaceGeneric:: bhpMax(const std::function& fflo, const double bhp_limit, const double maxPerfPress, const double vfp_flo_front, DeferredLogger& deferred_logger) const { // Find the bhp-point where production becomes nonzero. double bhp_max = 0.0; double low = bhp_limit; double high = maxPerfPress + 1.0 * unit::barsa; double f_low = fflo(low); double f_high = fflo(high); deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " f(low) = " + std::to_string(f_low) + " f(high) = " + std::to_string(f_high)); int adjustments = 0; const int max_adjustments = 10; const double adjust_amount = 5.0 * unit::barsa; while (f_low * f_high > 0.0 && adjustments < max_adjustments) { // Same sign, adjust high to see if we can flip it. high += adjust_amount; f_high = fflo(high); ++adjustments; } if (f_low * f_high > 0.0) { if (f_low > 0.0) { // Even at the BHP limit, we are injecting. // There will be no solution here, return an // empty optional. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to inoperability for well " + this->name()); return std::nullopt; } else { // Still producing, even at high bhp. assert(f_high < 0.0); bhp_max = high; } } else { // Bisect to find a bhp point where we produce, but // not a large amount ('eps' below). const double eps = 0.1 * std::fabs(vfp_flo_front); const int maxit = 50; int it = 0; while (std::fabs(f_low) > eps && it < maxit) { const double curr = 0.5*(low + high); const double f_curr = fflo(curr); if (f_curr * f_low > 0.0) { low = curr; f_low = f_curr; } else { high = curr; f_high = f_curr; } ++it; } if (it < maxit) { bhp_max = low; } else { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Bisect did not find the bhp-point where we produce for well " + this->name()); return std::nullopt; } } deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " f(low) = " + std::to_string(f_low) + " f(high) = " + std::to_string(f_high) + " bhp_max = " + std::to_string(bhp_max)); return bhp_max; } bool WellInterfaceGeneric:: bisectBracket(const std::function& eq, const std::array& range, double& low, double& high, std::optional& approximate_solution, DeferredLogger& deferred_logger) const { bool finding_bracket = false; low = range[0]; high = range[1]; double eq_high = eq(high); double eq_low = eq(low); const double eq_bhplimit = eq_low; deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " eq(low) = " + std::to_string(eq_low) + " eq(high) = " + std::to_string(eq_high)); if (eq_low * eq_high > 0.0) { // Failed to bracket the zero. // If this is due to having two solutions, bisect until bracketed. double abs_low = std::fabs(eq_low); double abs_high = std::fabs(eq_high); int bracket_attempts = 0; const int max_bracket_attempts = 20; double interval = high - low; const double min_interval = 1.0 * unit::barsa; while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) { if (abs_high < abs_low) { low = 0.5 * (low + high); eq_low = eq(low); abs_low = std::fabs(eq_low); } else { high = 0.5 * (low + high); eq_high = eq(high); abs_high = std::fabs(eq_high); } ++bracket_attempts; } if (eq_low * eq_high <= 0.) { // We have a bracket! finding_bracket = true; // Now, see if (bhplimit, low) is a bracket in addition to (low, high). // If so, that is the bracket we shall use, choosing the solution with the // highest flow. if (eq_low * eq_bhplimit <= 0.0) { high = low; low = range[0]; } } else { // eq_low * eq_high > 0.0 // Still failed bracketing! const double limit = 0.1 * unit::barsa; if (std::min(abs_low, abs_high) < limit) { // Return the least bad solution if less off than 0.1 bar. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE", "Robust bhp(thp) not solved precisely for well " + this->name()); approximate_solution = abs_low < abs_high ? low : high; } else { // Return failure. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE", "Robust bhp(thp) solve failed due to bracketing failure for well " + this->name()); } } } else { finding_bracket = true; } return finding_bracket; } bool WellInterfaceGeneric:: bruteForceBracket(const std::function& eq, const std::array& range, double& low, double& high, DeferredLogger& deferred_logger) const { bool finding_bracket = false; low = range[0]; high = range[1]; const int sample_number = 100; const double interval = (high - low) / sample_number; double eq_low = eq(low); double eq_high; for (int i = 0; i < sample_number + 1; ++i) { high = range[0] + interval * i; eq_high = eq(high); if (eq_high * eq_low <= 0.) { finding_bracket = true; break; } low = high; eq_low = eq_high; } if (finding_bracket) { deferred_logger.debug( " brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) + " high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high)); } return finding_bracket; } std::optional WellInterfaceGeneric:: computeBhpAtThpLimitProdCommon(const std::function(const double)>& frates, const SummaryState& summary_state, const double maxPerfPress, const double rho, const double alq_value, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) should be returned. static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; // Make the fbhp() function. const auto& controls = this->wellEcl().productionControls(summary_state); const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number); const double vfp_ref_depth = table.getDatumDepth(); const double thp_limit = this->getTHPConstraint(summary_state); const double dp = wellhelpers::computeHydrostaticCorrection(this->refDepth(), vfp_ref_depth, rho, this->gravity()); auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector& rates) { assert(rates.size() == 3); return this->vfpProperties()->getProd() ->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp; }; // Make the flo() function. auto flo = [&table](const std::vector& rates) { return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]); }; // Find the bhp-point where production becomes nonzero. auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); }; auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger); // could not solve for the bhp-point, we could not continue to find the bhp if (!bhp_max.has_value()) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to not being able to " "find bhp-point where production becomes non-zero for well " + this->name()); return std::nullopt; } const std::array range {controls.bhp_limit, *bhp_max}; return computeBhpAtThpLimitCommon(frates, fbhp, range, deferred_logger); } std::optional WellInterfaceGeneric:: computeBhpAtThpLimitCommon(const std::function(const double)>& frates, const std::function)>& fbhp, const std::array& range, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) should be returned. // Define the equation we want to solve. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // Find appropriate brackets for the solution. std::optional approximate_solution; double low, high; // trying to use bisect way to locate a bracket bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger); // based on the origional design, if an approximate solution is suggested, we use this value directly // in the long run, we might change it if (approximate_solution.has_value()) { return *approximate_solution; } if (!finding_bracket) { deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt "); finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger); } if (!finding_bracket) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to not being able to " "bracket the bhp solution with the brute force search for " + this->name()); return std::nullopt; } // Solve for the proper solution in the given interval. const int max_iteration = 100; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + this->name()); return std::nullopt; } } } // namespace Opm