/*
Copyright 2015, 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILTRANSPORTMODEL_HEADER_INCLUDED
#define OPM_BLACKOILTRANSPORTMODEL_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
namespace Opm {
/// A model implementation for the transport equation in three-phase black oil.
template
class BlackoilTransportModel : public BlackoilModelBase >
{
public:
typedef BlackoilModelBase > Base;
friend Base;
typedef typename Base::ReservoirState ReservoirState;
typedef typename Base::WellState WellState;
typedef typename Base::SolutionState SolutionState;
typedef typename Base::V V;
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells_arg well structure
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] terminal_output request output to cout/cerr
BlackoilTransportModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdFromDeck& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const StandardWells& std_wells,
const NewtonIterationBlackoilInterface& linsolver,
std::shared_ptr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output)
: Base(param, grid, fluid, geo, rock_comp_props, std_wells, linsolver,
eclState, has_disgas, has_vapoil, terminal_output)
{
}
void prepareStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
const WellState& well_state)
{
Base::prepareStep(timer, reservoir_state, well_state);
Base::param_.solve_welleq_initially_ = false;
SolutionState state0 = variableState(reservoir_state, well_state);
asImpl().makeConstantState(state0);
asImpl().computeAccum(state0, 0);
}
SimulatorReport
assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
SimulatorReport report;
// If we have VFP tables, we need the well connection
// pressures for the "simple" hydrostatic correction
// between well depth and vfp table depth.
if (isVFPActive()) {
SolutionState state = asImpl().variableState(reservoir_state, well_state);
SolutionState state0 = state;
asImpl().makeConstantState(state0);
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
}
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
asImpl().wellModel().updateWellControls(well_state);
if (initial_assembly) {
// HACK
const_cast(total_flux_)
= Eigen::Map(reservoir_state.faceflux().data(), reservoir_state.faceflux().size());
const_cast(total_wellperf_flux_)
= Eigen::Map(well_state.perfRates().data(), well_state.perfRates().size());
const_cast(comp_wellperf_flux_)
= Eigen::Map(well_state.perfPhaseRates().data(), well_state.perfRates().size(), numPhases());
assert(numPhases() * well_state.perfRates().size() == well_state.perfPhaseRates().size());
asImpl().updatePhaseCondFromPrimalVariable(reservoir_state);
}
// Create the primary variables.
SolutionState state = asImpl().variableState(reservoir_state, well_state);
if (initial_assembly) {
SolutionState state0 = state;
asImpl().makeConstantState(state0);
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
}
// -------- Mass balance equations --------
asImpl().assembleMassBalanceEq(state);
// -------- Well equations ----------
if ( ! wellsActive() ) {
return report;
}
std::vector mob_perfcells;
std::vector b_perfcells;
asImpl().wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
report += asImpl().solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
}
V aliveWells;
std::vector cq_s;
// @afr changed
// asImpl().wellModel().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
asImpl().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
// end of changed
asImpl().wellModel().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
asImpl().wellModel().addWellFluxEq(cq_s, state, residual_);
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
asImpl().wellModel().addWellControlEq(state, well_state, aliveWells, residual_);
return report;
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
V solveJacobianSystem() const
{
const int n_transport = residual_.material_balance_eq[1].size();
const int n_full = residual_.sizeNonLinear();
const auto& mb = residual_.material_balance_eq;
LinearisedBlackoilResidual transport_res = {
{
// TODO: handle general 2-phase etc.
ADB::function(mb[1].value(), { mb[1].derivative()[1], mb[1].derivative()[2] }),
ADB::function(mb[2].value(), { mb[2].derivative()[1], mb[2].derivative()[2] })
},
ADB::null(),
ADB::null(),
residual_.matbalscale,
residual_.singlePrecision
};
assert(transport_res.sizeNonLinear() == 2*n_transport);
V dx_transport = linsolver_.computeNewtonIncrement(transport_res);
assert(dx_transport.size() == 2*n_transport);
V dx_full = V::Zero(n_full);
for (int i = 0; i < 2*n_transport; ++i) {
dx_full(n_transport + i) = dx_transport(i);
}
return dx_full;
}
using Base::numPhases;
using Base::numMaterials;
protected:
using Base::asImpl;
using Base::materialName;
using Base::convergenceReduction;
using Base::maxResidualAllowed;
using Base::linsolver_;
using Base::residual_;
using Base::sd_;
using Base::geo_;
using Base::ops_;
using Base::grid_;
using Base::use_threshold_pressure_;
using Base::canph_;
using Base::active_;
using Base::pvdt_;
using Base::fluid_;
using Base::param_;
using Base::terminal_output_;
using Base::isVFPActive;
using Base::phaseCondition;
using Base::vfp_properties_;
using Base::wellsActive;
V total_flux_; // HACK, should be part of a revised (transport-specific) SolutionState.
V total_wellperf_flux_;
DataBlock comp_wellperf_flux_;
Eigen::Array upwind_flags_;
SolutionState
variableState(const ReservoirState& x,
const WellState& xw) const
{
// As Base::variableState(), except making Pressure, Qs and Bhp constants.
std::vector vars0 = asImpl().variableStateInitials(x, xw);
std::vector vars = ADB::variables(vars0);
const std::vector indices = asImpl().variableStateIndices();
vars[indices[Pressure]] = ADB::constant(vars[indices[Pressure]].value());
vars[indices[Qs]] = ADB::constant(vars[indices[Qs]].value());
vars[indices[Bhp]] = ADB::constant(vars[indices[Bhp]].value());
return asImpl().variableStateExtractVars(x, indices, vars);
}
void assembleMassBalanceEq(const SolutionState& state)
{
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in sd_.rq[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// on the initial call to assemble() and stored in sd_.rq[phase].accum[0].
asImpl().computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const V trans_nnc = ops_.nnc_trans;
V trans_all(transi.size() + trans_nnc.size());
trans_all << transi, trans_nnc;
const ADB tr_mult = asImpl().transMult(state.pressure);
const V gdz = geo_.gravity()[2] * (ops_.grad * geo_.z().matrix());
// Compute mobilities and heads
const std::vector& cond = asImpl().phaseCondition();
const std::vector kr = asImpl().computeRelPerm(state);
#pragma omp parallel for schedule(static)
for (int phase_idx = 0; phase_idx < numPhases(); ++phase_idx) {
// Compute and store mobilities.
const int canonical_phase_idx = canph_[ phase_idx ];
const ADB& phase_pressure = state.canonical_phase_pressures[canonical_phase_idx];
sd_.rq[phase_idx].mu = asImpl().fluidViscosity(canonical_phase_idx, phase_pressure, state.temperature, state.rs, state.rv, cond);
sd_.rq[phase_idx].kr = kr[canonical_phase_idx];
// Note that the pressure-dependent transmissibility multipliers are considered
// part of the mobility here.
sd_.rq[ phase_idx ].mob = tr_mult * sd_.rq[phase_idx].kr / sd_.rq[phase_idx].mu;
// Compute head differentials. Gravity potential is done using the face average as in eclipse and MRST.
sd_.rq[phase_idx].rho = asImpl().fluidDensity(canonical_phase_idx, sd_.rq[phase_idx].b, state.rs, state.rv);
const ADB rhoavg = ops_.caver * sd_.rq[phase_idx].rho;
sd_.rq[ phase_idx ].dh = ops_.grad * phase_pressure - rhoavg * gdz;
if (use_threshold_pressure_) {
asImpl().applyThresholdPressures(sd_.rq[ phase_idx ].dh);
}
}
// Extract saturation-dependent part of head differences.
const ADB gradp = ops_.grad * state.pressure;
std::vector dh_sat(numPhases(), ADB::null());
for (int phase_idx = 0; phase_idx < numPhases(); ++phase_idx) {
dh_sat[phase_idx] = gradp - sd_.rq[phase_idx].dh;
}
// Find upstream directions for each phase.
upwind_flags_ = multiPhaseUpwind(dh_sat, trans_all);
// Compute (upstream) phase and total mobilities for connections.
// Also get upstream b, rs, and rv values to avoid recreating the UpwindSelector.
std::vector mob(numPhases(), ADB::null());
std::vector b(numPhases(), ADB::null());
ADB rs = ADB::null();
ADB rv = ADB::null();
ADB tot_mob = ADB::constant(V::Zero(gdz.size()));
for (int phase_idx = 0; phase_idx < numPhases(); ++phase_idx) {
UpwindSelector upwind(grid_, ops_, upwind_flags_.col(phase_idx));
mob[phase_idx] = upwind.select(sd_.rq[phase_idx].mob);
tot_mob += mob[phase_idx];
b[phase_idx] = upwind.select(sd_.rq[phase_idx].b);
if (canph_[phase_idx] == Oil) {
rs = upwind.select(state.rs);
}
if (canph_[phase_idx] == Gas) {
rv = upwind.select(state.rv);
}
}
// Compute phase fluxes.
for (int phase_idx = 0; phase_idx < numPhases(); ++phase_idx) {
ADB gflux = ADB::constant(V::Zero(gdz.size()));
for (int other_phase = 0; other_phase < numPhases(); ++other_phase) {
if (phase_idx != other_phase) {
gflux += mob[other_phase] * (dh_sat[phase_idx] - dh_sat[other_phase]);
}
}
sd_.rq[phase_idx].mflux = b[phase_idx] * (mob[phase_idx] / tot_mob) * (total_flux_ + trans_all * gflux);
}
#pragma omp parallel for schedule(static)
for (int phase_idx = 0; phase_idx < numPhases(); ++phase_idx) {
// const int canonical_phase_idx = canph_[ phase_idx ];
// const ADB& phase_pressure = state.canonical_phase_pressures[canonical_phase_idx];
// asImpl().computeMassFlux(phase_idx, trans_all, kr[canonical_phase_idx], phase_pressure, state);
// Material balance equation for this phase.
residual_.material_balance_eq[ phase_idx ] =
pvdt_ * (sd_.rq[phase_idx].accum[1] - sd_.rq[phase_idx].accum[0])
+ ops_.div*sd_.rq[phase_idx].mflux;
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
// Add the extra (flux) terms to the mass balance equations
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
residual_.material_balance_eq[ pg ] += ops_.div * (rs * sd_.rq[po].mflux);
residual_.material_balance_eq[ po ] += ops_.div * (rv * sd_.rq[pg].mflux);
}
if (param_.update_equations_scaling_) {
asImpl().updateEquationsScaling();
}
}
Eigen::Array multiPhaseUpwind(const std::vector& head_diff,
const V& transmissibility)
{
assert(numPhases() == 3);
const int num_connections = head_diff[0].size();
Eigen::Array upwind(num_connections, numPhases());
for (int conn = 0; conn < num_connections; ++conn) {
const double q = total_flux_[conn];
const double t = transmissibility[conn];
const int a = ops_.connection_cells(conn, 0); // first cell of connection
const int b = ops_.connection_cells(conn, 1); // second cell of connection
auto up = connectionMultiPhaseUpwind(
{{ head_diff[0].value()[conn], head_diff[1].value()[conn], head_diff[2].value()[conn] }},
{{ sd_.rq[0].mob.value()[a], sd_.rq[1].mob.value()[a], sd_.rq[2].mob.value()[a]}},
{{ sd_.rq[0].mob.value()[b], sd_.rq[1].mob.value()[b], sd_.rq[2].mob.value()[b]}},
t,
q);
for (int ii = 0; ii < numPhases(); ++ii) {
upwind(conn, ii) = up[ii];
}
}
return upwind;
}
void computeWellFlux(const SolutionState& state,
const std::vector& mob_perfcells,
const std::vector& b_perfcells,
V& /* aliveWells */,
std::vector& cq_s) const
{
// Note that use of this function replaces using the well models'
// function of the same name.
if( ! asImpl().localWellsActive() ) return ;
const int np = asImpl().wells().number_of_phases;
const int nw = asImpl().wells().number_of_wells;
const int nperf = asImpl().wells().well_connpos[nw];
const Opm::PhaseUsage& pu = asImpl().fluid_.phaseUsage();
// Compute total mobilities for perforations.
ADB totmob_perfcells = ADB::constant(V::Zero(nperf));
for (int phase = 0; phase < numPhases(); ++phase) {
totmob_perfcells += mob_perfcells[phase];
}
// Compute fractional flow.
std::vector frac_flow(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
frac_flow[phase] = mob_perfcells[phase] / totmob_perfcells;
}
// Identify injecting and producing perforations.
V is_inj = V::Zero(nperf);
V is_prod = V::Zero(nperf);
for (int c = 0; c < nperf; ++c){
if (total_wellperf_flux_[c] > 0.0) {
is_inj[c] = 1;
} else {
is_prod[c] = 1;
}
}
// Compute fluxes for producing perforations.
std::vector cq_s_prod(3, ADB::null());
for (int phase = 0; phase < np; ++phase) {
// For producers, we use the total reservoir flux from the pressure solver.
cq_s_prod[phase] = b_perfcells[phase] * frac_flow[phase] * total_wellperf_flux_;
}
if (asImpl().has_disgas_ || asImpl().has_vapoil_) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const ADB cq_s_prod_oil = cq_s_prod[oilpos];
const ADB cq_s_prod_gas = cq_s_prod[gaspos];
cq_s_prod[gaspos] += subset(state.rs, Base::well_model_.wellOps().well_cells) * cq_s_prod_oil;
cq_s_prod[oilpos] += subset(state.rv, Base::well_model_.wellOps().well_cells) * cq_s_prod_gas;
}
// Compute well perforation surface volume fluxes.
cq_s.resize(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
// For injectors, we use the component fluxes computed by the pressure solver.
const V cq_s_inj = comp_wellperf_flux_.col(pos);
cq_s[phase] = is_prod * cq_s_prod[phase] + is_inj * cq_s_inj;
}
}
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration)
{
const double dt = timer.currentStepLength();
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = asImpl().numPhases();
const int nm = asImpl().numMaterials();
assert(int(sd_.rq.size()) == nm);
const V& pv = geo_.poreVolume();
std::vector R_sum(nm);
std::vector B_avg(nm);
std::vector maxCoeff(nm);
std::vector maxNormWell(np);
Eigen::Array B(nc, nm);
Eigen::Array R(nc, nm);
Eigen::Array tempV(nc, nm);
for ( int idx = 0; idx < nm; ++idx )
{
const ADB& tempB = sd_.rq[idx].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
const double pvSum = convergenceReduction(B, tempV, R,
R_sum, maxCoeff, B_avg, maxNormWell,
nc);
std::vector CNV(nm);
std::vector mass_balance_residual(nm);
std::vector well_flux_residual(np);
bool converged_MB = true;
bool converged_CNV = true;
// Finish computation
for ( int idx = 1; idx < nm; ++idx ) {
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
assert(nm >= np);
}
const bool converged = converged_MB && converged_CNV;
for (int idx = 0; idx < nm; ++idx) {
if (std::isnan(mass_balance_residual[idx])
|| std::isnan(CNV[idx])
|| (idx < np && std::isnan(well_flux_residual[idx]))) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << materialName(idx));
}
if (mass_balance_residual[idx] > maxResidualAllowed()
|| CNV[idx] > maxResidualAllowed()
|| (idx < np && well_flux_residual[idx] > maxResidualAllowed())) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << materialName(idx));
}
}
if ( terminal_output_ ) {
// Only rank 0 does print to std::cout
std::ostringstream os;
if (iteration == 0) {
os << "\nIter";
for (int idx = 1; idx < nm; ++idx) {
os << " MB(" << materialName(idx).substr(0, 3) << ") ";
}
for (int idx = 1; idx < nm; ++idx) {
os << " CNV(" << materialName(idx).substr(0, 1) << ") ";
}
os << '\n';
}
os.precision(3);
os.setf(std::ios::scientific);
os << std::setw(4) << iteration;
for (int idx = 1; idx < nm; ++idx) {
os << std::setw(11) << mass_balance_residual[idx];
}
for (int idx = 1; idx < nm; ++idx) {
os << std::setw(11) << CNV[idx];
}
OpmLog::info(os.str());
}
return converged;
}
};
/// Providing types by template specialisation of ModelTraits for BlackoilTransportModel.
template
struct ModelTraits< BlackoilTransportModel >
{
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
typedef DefaultBlackoilSolutionState SolutionState;
};
} // namespace Opm
#endif // OPM_BLACKOILTRANSPORTMODEL_HEADER_INCLUDED