/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
Copyright 2012 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static void outputState(const UnstructuredGrid& grid,
const Opm::PolymerState& state,
const int step,
const std::string& output_dir,
const Opm::TransportModelPolymer& reorder_model)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
THROW("Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["concentration"] = &state.concentration();
dm["cmax"] = &state.maxconcentration();
std::vector cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
// Write data (not grid) in Matlab format
dm["faceflux"] = &state.faceflux();
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
const std::vector& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator(file, "\n"));
}
#if PROFILING
std::ostringstream fname;
fname << output_dir << "/" << "residualcounts" << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
typedef std::list ListRes;
const ListRes& res_counts = reorder_model.res_counts;
for (ListRes::const_iterator it = res_counts.begin(); it != res_counts.end(); ++it) {
file << it->res_s << "," << it->cell << "," << std::setprecision(15) << it->s << "," << std::setprecision(15) << it->c << "\n";
}
file.close();
#endif
}
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
wellreport.write(os);
}
// --------------- Types needed to define transport solver ---------------
class PolymerFluid2pWrappingProps
{
public:
PolymerFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops)
: props_(props),
polyprops_(polyprops),
smin_(props.numCells()*props.numPhases()),
smax_(props.numCells()*props.numPhases())
{
if (props.numPhases() != 2) {
THROW("PolymerFluid2pWrapper requires 2 phases.");
}
const int num_cells = props.numCells();
std::vector cells(num_cells);
for (int c = 0; c < num_cells; ++c) {
cells[c] = c;
}
props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]);
}
double density(int phase) const
{
return props_.density()[phase];
}
template
void adsorption(const PolyC& c, const PolyC& cmax, CAds& cads, DCAdsDc& dcadsdc)
{
polyprops_.adsorptionWithDer(c, cmax, cads, dcadsdc);
}
const double* porosity() const
{
return props_.porosity();
}
double deadporespace() const
{
return polyprops_.deadPoreVol();
}
double rockdensity() const
{
return polyprops_.rockDensity();
}
template
void mobility(int cell, const Sat& s, const PolyC& c, const PolyC& cmax,
Mob& mob, DMobDs& dmobds, DMobWatDc& dmobwatdc) const
{
const double* visc = props_.viscosity();
double relperm[2];
double drelpermds[4];
props_.relperm(1, &s[0], &cell, relperm, drelpermds);
polyprops_.effectiveMobilitiesWithDer(c, cmax, visc, relperm, drelpermds, mob, dmobds, dmobwatdc);
}
template
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
{
double pcow[2];
double dpcow[4];
props_.capPress(1, &s[0], &c, pcow, dpcow);
pcap = pcow[0];
ASSERT(pcow[1] == 0.0);
dpcap = dpcow[0];
ASSERT(dpcow[1] == 0.0);
ASSERT(dpcow[2] == 0.0);
ASSERT(dpcow[3] == 0.0);
}
double s_min(int c) const
{
return smin_[2*c + 0];
}
double s_max(int c) const
{
return smax_[2*c + 0];
}
double cMax() const
{
return polyprops_.cMax();
}
template
void computeMc(const PolyC& c, Mc& mc,
DMcDc& dmcdc) const
{
polyprops_.computeMcWithDer(c, mc, dmcdc);
}
private:
const Opm::IncompPropertiesInterface& props_;
const Opm::PolymerProperties& polyprops_;
std::vector smin_;
std::vector smax_;
};
class IncompPropertiesCorey : public Opm::IncompPropertiesBasic {
private:
std::vector exponents_;
int np_;
double corey_kr(double s, int p) const {
return std::pow(s, exponents_[p]);
}
double corey_dkrds(double s, int p) const {
return exponents_[p]*std::pow(s, exponents_[p] - 1.0);
}
public:
IncompPropertiesCorey(const Opm::parameter::ParameterGroup& param,
const int dim,
const int num_cells,
const std::vector exponents
) : IncompPropertiesBasic(param, dim, num_cells) {
exponents_ = exponents;
np_ = numPhases();
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
virtual void relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const {
if (dkrds == 0) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np_; ++p) {
kr[i*np_ + p] = corey_kr(s[i*np_ + p], p);
}
}
return;
}
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np_*np_, dkrds + (i+1)*np_*np_, 0.0);
for (int p = 0; p < np_; ++p) {
kr[i*np_ + p] = corey_kr(s[i*np_ + p], p);
// Only diagonal elements in derivative.
dkrds[i*np_*np_ + p*np_ + p] = corey_dkrds(s[i*np_ + p], p);
}
}
}
};
typedef PolymerFluid2pWrappingProps TwophaseFluidPolymer;
typedef Opm::SinglePointUpwindTwoPhasePolymer FluxModel;
using namespace Opm::ImplicitTransportDefault;
typedef NewtonVectorCollection< ::std::vector > NVecColl;
typedef JacobianSystem < struct CSRMatrix, NVecColl > JacSys;
template
class MaxNorm {
public:
static double
norm(const Vector& v) {
return AccumulationNorm ::norm(v);
}
};
typedef Opm::ImplicitTransport TransportSolver;
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow with polymer ===============\n\n";
Opm::parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// Reading various control parameters.
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
const bool use_reorder = param.getDefault("use_reorder", true);
const bool output = param.getDefault("output", true);
std::string output_dir;
int output_interval = 1;
if (output) {
output_dir = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
output_interval = param.getDefault("output_interval", output_interval);
}
const int num_transport_substeps = param.getDefault("num_transport_substeps", 1);
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.getDefault("use_deck", true);
use_deck = param.has("deck_filename") && use_deck;
boost::scoped_ptr grid;
boost::scoped_ptr props;
boost::scoped_ptr wells;
boost::scoped_ptr rock_comp;
Opm::SimulatorTimer simtimer;
Opm::PolymerState state;
Opm::PolymerProperties polyprop;
bool check_well_controls = false;
int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
// Grid init
grid.reset(new Opm::GridManager(deck));
// Rock and fluid init
props.reset(new Opm::IncompPropertiesFromDeck(deck, *grid->c_grid()));
// Wells init.
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
check_well_controls = param.getDefault("check_well_controls", false);
max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Timer init.
if (deck.hasField("TSTEP")) {
simtimer.init(deck);
} else {
simtimer.init(param);
}
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(deck));
// Gravity.
gravity[2] = deck.hasField("NOGRAV") ? 0.0 : Opm::unit::gravity;
// Init state variables (saturation and pressure).
initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
// Init polymer properties.
polyprop.readFromDeck(deck);
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
// props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
bool use_corey = false;
use_corey = param.getDefault("use_corey", false);
if (use_corey) {
std::vector exponents(2, 1.0);
exponents[0] = param.getDefault("n1", 1.0);
exponents[1] = param.getDefault("n2", 1.0);
props.reset(new IncompPropertiesCorey(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells, exponents));
} else {
props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
}
// Wells init.
wells.reset(new Opm::WellsManager());
// Timer init.
simtimer.init(param);
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
// Init Polymer state
if (param.has("poly_init")) {
double poly_init = param.getDefault("poly_init", 0.0);
for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) {
double smin[2], smax[2];
props->satRange(1, &cell, smin, smax);
if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) {
state.concentration()[cell] = poly_init;
state.maxconcentration()[cell] = poly_init;
} else {
state.saturation()[2*cell + 0] = 0.;
state.saturation()[2*cell + 1] = 1.;
state.concentration()[cell] = 0.;
state.maxconcentration()[cell] = 0.;
}
}
}
// Init polymer properties.
// Setting defaults to provide a simple example case.
bool use_deck_fluid = param.getDefault("use_deck_fluid", false);
if(!use_deck_fluid){
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(param));
double c_max = param.getDefault("c_max_limit", 5.0);
double mix_param = param.getDefault("mix_param", 1.0);
double rock_density = param.getDefault("rock_density", 1000.0);
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.1);
double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
double c_max_ads = param.getDefault("c_max_ads", 1.);
int ads_index = param.getDefault("ads_index", Opm::PolymerProperties::NoDesorption);
std::vector c_vals_visc(2, -1e100);
c_vals_visc[0] = 0.0;
c_vals_visc[1] = c_max;
std::vector visc_mult_vals(2, -1e100);
visc_mult_vals[0] = 1.0;
visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
std::vector c_vals_ads(2, -1e100);
c_vals_ads[0] = 0.0;
c_vals_ads[1] = 8.0;
// Here we set up adsorption equal to zero.
std::vector ads_vals(2, -1e100);
ads_vals[0] = 0.0;
ads_vals[1] = 0.0;
polyprop.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
static_cast(ads_index),
c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
}else{
std::string deck_filename = param.get("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
rock_comp.reset(new Opm::RockCompressibility(deck));
polyprop.readFromDeck(deck);
}
}
// Initialize polymer inflow function.
double poly_start = param.getDefault("poly_start_days", 300.0)*Opm::unit::day;
double poly_end = param.getDefault("poly_end_days", 800.0)*Opm::unit::day;
double poly_amount = param.getDefault("poly_amount", polyprop.cMax());
PolymerInflow poly_inflow(poly_start, poly_end, poly_amount);
// Extra fluid init for transport solver.
TwophaseFluidPolymer fluid(*props, polyprop);
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
bool use_segregation_split = false;
bool use_column_solver = false;
bool use_gauss_seidel_gravity = false;
if (use_gravity && use_reorder) {
use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
if (use_segregation_split) {
use_column_solver = param.getDefault("use_column_solver", use_column_solver);
if (use_column_solver) {
use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity);
}
}
}
// Check that rock compressibility is not used with solvers that do not handle it.
int nl_pressure_maxiter = 0;
double nl_pressure_residual_tolerance = 0.0;
double nl_pressure_change_tolerance = 0.0;
if (rock_comp->isActive()) {
if (!use_reorder) {
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
}
nl_pressure_residual_tolerance = param.getDefault("nl_pressure_residual_tolerance", 0.0);
nl_pressure_change_tolerance = param.getDefault("nl_pressure_change_tolerance", 1.0); // In Pascal.
nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
}
// Source-related variables init.
int num_cells = grid->c_grid()->number_of_cells;
// Extra rock init.
std::vector porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// Initialising src
std::vector src(num_cells, 0.0);
if (wells->c_wells()) {
// Do nothing, wells will be the driving force, not source terms.
// Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
} else {
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault("injected_volume_per_day", default_injection)/Opm::unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
std::vector reorder_src = src;
// Boundary conditions.
Opm::FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get("pside");
double pside_pressure = param.get("pside_pressure");
bcs.pressureSide(*grid->c_grid(), Opm::FlowBCManager::Side(pside), pside_pressure);
}
// Solvers init.
// Linear solver.
Opm::LinearSolverFactory linsolver(param);
//Opm::LinearSolverAGMG linsolver;
// Pressure solver.
const double *grav = use_gravity ? &gravity[0] : 0;
Opm::IncompTpfaPolymer psolver(*grid->c_grid(), *props, rock_comp.get(), polyprop, linsolver,
nl_pressure_residual_tolerance, nl_pressure_change_tolerance,
nl_pressure_maxiter,
grav, wells->c_wells(), src, bcs.c_bcs());
// Reordering solver.
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
Opm::TransportModelPolymer::SingleCellMethod method;
std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing"));
if (method_string == "Bracketing") {
method = Opm::TransportModelPolymer::Bracketing;
} else if (method_string == "Newton") {
method = Opm::TransportModelPolymer::Newton;
} else if (method_string == "Gradient") {
method = Opm::TransportModelPolymer::Gradient;
} else if (method_string == "NewtonSimpleSC") {
method = Opm::TransportModelPolymer::NewtonSimpleSC;
} else if (method_string == "NewtonSimpleC") {
method = Opm::TransportModelPolymer::NewtonSimpleC;
} else {
THROW("Unknown method: " << method_string);
}
Opm::TransportModelPolymer reorder_model(*grid->c_grid(), *props, polyprop,
method, nl_tolerance, nl_maxiter);
if (use_gauss_seidel_gravity) {
reorder_model.initGravity(grav);
}
// Non-reordering solver.
FluxModel fmodel(fluid, *grid->c_grid(), porevol, grav, guess_old_solution);
if (use_gravity) {
fmodel.initGravityTrans(*grid->c_grid(), psolver.getHalfTrans());
}
TransportSolver tsolver(fmodel);
// Column-based gravity segregation solver.
std::vector > columns;
if (use_column_solver) {
Opm::extractColumn(*grid->c_grid(), columns);
}
Opm::GravityColumnSolverPolymer colsolver(fmodel, fluid, *grid->c_grid(), nl_tolerance, nl_maxiter);
// // // Not implemented for polymer.
// // Control init.
// Opm::ImplicitTransportDetails::NRReport rpt;
// Opm::ImplicitTransportDetails::NRControl ctrl;
// if (!use_reorder || use_segregation_split) {
// ctrl.max_it = param.getDefault("max_it", 20);
// ctrl.verbosity = param.getDefault("verbosity", 0);
// ctrl.max_it_ls = param.getDefault("max_it_ls", 5);
// }
// // Linear solver init.
// using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
// CSRMatrixUmfpackSolver linsolve;
// The allcells vector is used in calls to computeTotalMobility()
// and computeTotalMobilityOmega().
std::vector allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
// Warn if any parameters are unused.
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
// Write parameters used for later reference.
if (output) {
param.writeParam(output_dir + "/spu_2p.param");
}
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
double init_satvol[2] = { 0.0 };
double init_polymass = 0.0;
double satvol[2] = { 0.0 };
double polymass = 0.0;
double polymass_adsorbed = 0.0;
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
Opm::WellState well_state;
well_state.init(wells->c_wells(), state);
std::vector fractional_flows;
std::vector well_resflows_phase;
int num_wells = 0;
if (wells->c_wells()) {
num_wells = wells->c_wells()->number_of_wells;
well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(wells->c_wells()->number_of_wells), 0.0);
wellreport.push(*props, *wells->c_wells(), state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !simtimer.done(); ++simtimer) {
// Report timestep and (optionally) write state to disk.
simtimer.report(std::cout);
if (output && (simtimer.currentStepNum() % output_interval == 0)) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir, reorder_model);
}
// Solve pressure.
if (check_well_controls) {
computeFractionalFlow(*props, allcells, state.saturation(), fractional_flows);
}
if (check_well_controls) {
wells->applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls;
int well_control_iteration = 0;
do {
pressure_timer.start();
std::vector initial_pressure = state.pressure();
psolver.solve(simtimer.currentStepLength(), state, well_state);
if (!rock_comp->isActive()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.;
double av_press = 0.;
double tot_vol = 0.;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid->c_grid()->cell_volumes[cell];
av_press += state.pressure()[cell]*grid->c_grid()->cell_volumes[cell];
tot_vol += grid->c_grid()->cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
if (check_well_controls) {
Opm::computePhaseFlowRatesPerWell(*wells->c_wells(),
fractional_flows,
well_state.perfRates(),
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells->conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations) {
THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
wells->c_wells(), well_state.perfRates(), reorder_src);
// Find inflow rate.
const double current_time = simtimer.currentTime();
double stepsize = simtimer.currentStepLength();
const double inflowc0 = poly_inflow(current_time + 1e-5*stepsize);
const double inflowc1 = poly_inflow(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport.
transport_timer.start();
if (num_transport_substeps != 1) {
stepsize /= double(num_transport_substeps);
std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl;
}
for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
if (use_reorder) {
reorder_model.solve(&state.faceflux()[0], &porevol[0], &reorder_src[0], stepsize, inflow_c,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(*props, polyprop, state.saturation(), state.concentration(), state.maxconcentration(),
reorder_src, simtimer.currentStepLength(), inflow_c,
injected, produced, polyinj, polyprod);
if (use_segregation_split) {
if (use_column_solver) {
if (use_gauss_seidel_gravity) {
reorder_model.solveGravity(columns, &porevol[0], stepsize, state.saturation(),
state.concentration(), state.maxconcentration());
} else {
colsolver.solve(columns, stepsize, state.saturation(), state.concentration(),
state.maxconcentration());
}
} else {
THROW("use_segregation_split option for polymer is only implemented in the use_column_solver case.");
}
}
} else {
THROW("Implicit transport solver not implemented for polymer.");
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), polyprop.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(*props, polyprop, porevol, state.maxconcentration());
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nVolume and polymer mass balance: "
" water(pv) oil(pv) polymer(kg)\n";
std::cout << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed volumes: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init
<< std::setw(width) << tot_polyprod << std::endl;
std::cout << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init
<< std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
std::cout << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
<< std::endl;
std::cout.precision(8);
watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells->c_wells()) {
wellreport.push(*props, *wells->c_wells(), state.saturation(),
simtimer.currentTime() + simtimer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
total_timer.stop();
std::cout << "\n\n================ End of simulation ===============\n"
<< "Total time taken: " << total_timer.secsSinceStart()
<< "\n Pressure time: " << ptime
<< "\n Transport time: " << ttime << std::endl;
if (output) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir, reorder_model);
outputWaterCut(watercut, output_dir);
if (wells->c_wells()) {
outputWellReport(wellreport, output_dir);
}
}
}