// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include
#include
#if HAVE_MPI
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_DUNE_FEM
#include
#include
#include
#endif
#include
#include
#include
#include
namespace Opm {
std::optional (const Dune::CpGrid&)>> externalLoadBalancer;
template
EclGenericCpGridVanguard::EclGenericCpGridVanguard()
{
#if HAVE_MPI
MPI_Comm_rank(EclGenericVanguard::comm(), &mpiRank);
#else
mpiRank = 0;
#endif
}
template
void EclGenericCpGridVanguard::releaseEquilGrid()
{
equilGrid_.reset();
equilCartesianIndexMapper_.reset();
}
#if HAVE_MPI
template
void EclGenericCpGridVanguard::doLoadBalance_(Dune::EdgeWeightMethod edgeWeightsMethod,
bool ownersFirst,
bool serialPartitioning,
bool enableDistributedWells,
double zoltanImbalanceTol,
const Schedule& schedule,
std::vector& centroids,
EclipseState& eclState1,
EclGenericVanguard::ParallelWellStruct& parallelWells,
int numJacobiBlocks)
{
int mpiSize = 1;
MPI_Comm_size(grid_->comm(), &mpiSize);
if (mpiSize > 1 || numJacobiBlocks > 1) {
// the CpGrid's loadBalance() method likes to have the transmissibilities as
// its edge weights. since this is (kind of) a layering violation and
// transmissibilities are relatively expensive to compute, we only do it if
// more than a single process is involved in the simulation.
if (grid_->size(0))
{
this->allocTrans();
}
// convert to transmissibility for faces
// TODO: grid_->numFaces() is not generic. use grid_->size(1) instead? (might
// not work)
const auto& gridView = grid_->leafGridView();
unsigned numFaces = grid_->numFaces();
std::vector faceTrans;
int loadBalancerSet = externalLoadBalancer.has_value();
grid_->comm().broadcast(&loadBalancerSet, 1, 0);
if (!loadBalancerSet){
faceTrans.resize(numFaces, 0.0);
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
auto elemIt = gridView.template begin*codim=*/0>();
const auto& elemEndIt = gridView.template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
continue;
unsigned I = elemMapper.index(is.inside());
unsigned J = elemMapper.index(is.outside());
// FIXME (?): this is not portable!
unsigned faceIdx = is.id();
faceTrans[faceIdx] = this->getTransmissibility(I,J);
}
}
}
//distribute the grid and switch to the distributed view.
if (mpiSize > 1) {
{
const auto wells = schedule.getWellsatEnd();
try
{
auto& eclState = dynamic_cast(eclState1);
const EclipseGrid* eclGrid = nullptr;
if (grid_->comm().rank() == 0)
{
eclGrid = &eclState.getInputGrid();
}
PropsCentroidsDataHandle handle(*grid_, eclState, eclGrid, centroids,
cartesianIndexMapper());
if (loadBalancerSet)
{
std::vector parts;
if (grid_->comm().rank() == 0)
{
parts = (*externalLoadBalancer)(*grid_);
}
parallelWells = std::get<1>(grid_->loadBalance(handle, parts, &wells, ownersFirst, false, 1));
}
else
{
parallelWells =
std::get<1>(grid_->loadBalance(handle, edgeWeightsMethod, &wells, serialPartitioning,
faceTrans.data(), ownersFirst, false, 1, true, zoltanImbalanceTol,
enableDistributedWells));
}
}
catch(const std::bad_cast& e)
{
std::ostringstream message;
message << "Parallel simulator setup is incorrect as it does not use ParallelEclipseState ("
<< e.what() <<")"<switchToDistributedView();
}
// Calling Schedule::filterConnections would remove any perforated
// cells that exist only on other ranks even in the case of distributed wells
// But we need all connections to figure out the first cell of a well (e.g. for
// pressure). Hence this is now skipped. Rank 0 had everything even before.
if (numJacobiBlocks > 1 && mpiSize == 1) {
const auto wells = schedule.getWellsatEnd();
cell_part_.resize(grid_->numCells());
cell_part_ = grid_->zoltanPartitionWithoutScatter(&wells, faceTrans.data(), numJacobiBlocks, zoltanImbalanceTol);
}
}
}
template
void EclGenericCpGridVanguard::distributeFieldProps_(EclipseState& eclState1)
{
int mpiSize = 1;
MPI_Comm_size(grid_->comm(), &mpiSize);
if (mpiSize > 1) {
try
{
auto& parallelEclState = dynamic_cast(eclState1);
// reset cartesian index mapper for auto creation of field properties
parallelEclState.resetCartesianMapper(cartesianIndexMapper_.get());
parallelEclState.switchToDistributedProps();
}
catch(const std::bad_cast& e)
{
std::ostringstream message;
message << "Parallel simulator setup is incorrect as it does not use ParallelEclipseState ("
<< e.what() <<")"<
void EclGenericCpGridVanguard::doCreateGrids_(EclipseState& eclState)
{
const EclipseGrid* input_grid = nullptr;
std::vector global_porv;
// At this stage the ParallelEclipseState instance is still in global
// view; on rank 0 we have undistributed data for the entire grid, on
// the other ranks the EclipseState is empty.
if (mpiRank == 0) {
input_grid = &eclState.getInputGrid();
global_porv = eclState.fieldProps().porv(true);
OpmLog::info("\nProcessing grid");
}
#if HAVE_MPI
this->grid_ = std::make_unique(EclGenericVanguard::comm());
#else
this->grid_ = std::make_unique();
#endif
// Note: removed_cells is guaranteed to be empty on ranks other than 0.
auto removed_cells =
this->grid_->processEclipseFormat(input_grid,
&eclState,
/*isPeriodic=*/false,
/*flipNormals=*/false,
/*clipZ=*/false);
if (mpiRank == 0) {
const auto& active_porv = eclState.fieldProps().porv(false);
const auto& unit_system = eclState.getUnits();
const auto& volume_unit = unit_system.name( UnitSystem::measure::volume);
double total_pore_volume = unit_system.from_si( UnitSystem::measure::volume, std::accumulate(active_porv.begin(), active_porv.end(), 0.0));
OpmLog::info(fmt::format("Total number of active cells: {} / total pore volume: {:0.0f} {}", grid_->numCells(), total_pore_volume , volume_unit));
double removed_pore_volume = 0;
for (const auto& global_index : removed_cells)
removed_pore_volume += active_porv[ eclState.getInputGrid().activeIndex(global_index) ];
if (removed_pore_volume > 0) {
removed_pore_volume = unit_system.from_si( UnitSystem::measure::volume, removed_pore_volume );
OpmLog::info(fmt::format("Removed {} cells with a pore volume of {:0.0f} {} ({:5.3f} %) due to MINPV/MINPVV",
removed_cells.size(),
removed_pore_volume,
volume_unit,
100 * removed_pore_volume / total_pore_volume));
}
}
cartesianIndexMapper_ = std::make_unique(*grid_);
#if HAVE_MPI
{
const bool has_numerical_aquifer = eclState.aquifer().hasNumericalAquifer();
int mpiSize = 1;
MPI_Comm_size(grid_->comm(), &mpiSize);
// when there is numerical aquifers, new NNC are generated during
// grid processing we need to pass the NNC from root process to
// other processes
if (has_numerical_aquifer && mpiSize > 1) {
auto nnc_input = eclState.getInputNNC();
EclMpiSerializer ser(grid_->comm());
ser.broadcast(nnc_input);
if (mpiRank > 0) {
eclState.setInputNNC(nnc_input);
}
}
}
#endif
// We use separate grid objects: one for the calculation of the initial
// condition via EQUIL and one for the actual simulation. The reason is
// that the EQUIL code is allergic to distributed grids and the
// simulation grid is distributed before the initial condition is
// calculated.
//
// After loadbalance, grid_ will contain a global and distribute view.
// equilGrid_ being a shallow copy only the global view.
if (mpiRank == 0)
{
equilGrid_.reset(new Dune::CpGrid(*grid_));
equilCartesianIndexMapper_ = std::make_unique(*equilGrid_);
eclState.reset_actnum(UgGridHelpers::createACTNUM(*grid_));
}
{
auto size = removed_cells.size();
this->grid_->comm().broadcast(&size, 1, 0);
if (mpiRank != 0) {
removed_cells.resize(size);
}
this->grid_->comm().broadcast(removed_cells.data(), size, 0);
}
// Inform the aquifer object that we might have removed/deactivated
// cells as part of minimum pore-volume threshold processing.
eclState.pruneDeactivatedAquiferConnections(removed_cells);
}
template
void EclGenericCpGridVanguard::doFilterConnections_(Schedule& schedule)
{
// We only filter if we hold the global grid. Otherwise the filtering
// is done after load balancing as in the future the other processes
// will hold an empty partition for the global grid and hence filtering
// here would remove all well connections.
if (equilGrid_)
{
ActiveGridCells activeCells(equilGrid().logicalCartesianSize(),
equilGrid().globalCell().data(),
equilGrid().size(0));
schedule.filterConnections(activeCells);
}
#if HAVE_MPI
try
{
// Broadcast another time to remove inactive peforations on
// slave processors.
eclBroadcast(EclGenericVanguard::comm(), schedule);
}
catch(const std::exception& broadcast_error)
{
OpmLog::error(fmt::format("Distributing properties to all processes failed\n"
"Internal error message: {}", broadcast_error.what()));
MPI_Finalize();
std::exit(EXIT_FAILURE);
}
#endif
}
template
const Dune::CpGrid& EclGenericCpGridVanguard::equilGrid() const
{
assert(mpiRank == 0);
return *equilGrid_;
}
template
const Dune::CartesianIndexMapper& EclGenericCpGridVanguard::cartesianIndexMapper() const
{
return *cartesianIndexMapper_;
}
template
const Dune::CartesianIndexMapper& EclGenericCpGridVanguard::equilCartesianIndexMapper() const
{
assert(mpiRank == 0);
assert(equilCartesianIndexMapper_);
return *equilCartesianIndexMapper_;
}
template
Scalar EclGenericCpGridVanguard::computeCellThickness(const typename GridView::template Codim<0>::Entity& element) const
{
typedef typename Element::Geometry Geometry;
static constexpr int zCoord = Element::dimension - 1;
Scalar zz1 = 0.0;
Scalar zz2 = 0.0;
const Geometry& geometry = element.geometry();
// This code only works with CP-grid where the
// number of corners are 8 and
// also assumes that the first
// 4 corners are the top surface and
// the 4 next are the bottomn.
assert(geometry.corners() == 8);
for (int i=0; i < 4; ++i){
zz1 += geometry.corner(i)[zCoord];
zz2 += geometry.corner(i+4)[zCoord];
}
zz1 /=4;
zz2 /=4;
return zz2-zz1;
}
#if HAVE_DUNE_FEM
template class EclGenericCpGridVanguard>>>,
Dune::GridView<
Dune::Fem::GridPart2GridViewTraits<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>,
double>;
template class EclGenericCpGridVanguard>>,
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid,
Dune::PartitionIteratorType(4),
false> >,
double>;
#else
template class EclGenericCpGridVanguard>>,
Dune::GridView>,
double>;
#endif
} // namespace Opm