/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_WELLSTATE_HEADER_INCLUDED #define OPM_WELLSTATE_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include namespace Opm { /// The state of a set of wells. class WellState { public: typedef std::array< int, 3 > mapentry_t; typedef std::map< std::string, mapentry_t > WellMapType; template void init(const Wells* wells, const State& state) { init(wells, state.pressure()); } /// Allocate and initialize if wells is non-null. /// Also tries to give useful initial values to the bhp() and /// wellRates() fields, depending on controls. The /// perfRates() field is filled with zero, and perfPress() /// with -1e100. void init(const Wells* wells, const std::vector& cellPressures) { // clear old name mapping wellMap_.clear(); wells_.reset( clone_wells( wells ) ); if (wells) { const int nw = wells->number_of_wells; const int np = wells->number_of_phases; bhp_.resize(nw); thp_.resize(nw); temperature_.resize(nw, 273.15 + 20); // standard temperature for now wellrates_.resize(nw * np, 0.0); for (int w = 0; w < nw; ++w) { assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER)); const WellControls* ctrl = wells->ctrls[w]; const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w]; // setup wellname -> well index mapping { assert( wells->name[ w ] ); std::string name( wells->name[ w ] ); assert( name.size() > 0 ); mapentry_t& wellMapEntry = wellMap_[name]; wellMapEntry[ 0 ] = w; wellMapEntry[ 1 ] = wells->well_connpos[w]; // also store the number of perforations in this well wellMapEntry[ 2 ] = num_perf_this_well; } if ( num_perf_this_well == 0 ) { // No perforations of the well. Initialize to zero. for (int p = 0; p < np; ++p) { wellrates_[np*w + p] = 0.0; } bhp_[w] = 0.; thp_[w] = 0.; continue; } if (well_controls_well_is_stopped(ctrl)) { // Stopped well: // 1. Rates: assign zero well rates. for (int p = 0; p < np; ++p) { wellrates_[np*w + p] = 0.0; } // 2. Bhp: assign bhp equal to bhp control, if // applicable, otherwise assign equal to // first perforation cell pressure. if (well_controls_get_current_type(ctrl) == BHP) { bhp_[w] = well_controls_get_current_target( ctrl ); } else { const int first_cell = wells->well_cells[wells->well_connpos[w]]; bhp_[w] = cellPressures[first_cell]; } } else { // Open well: // 1. Rates: initialize well rates to match controls // if type is SURFACE_RATE. Otherwise, we // cannot set the correct value here, so we // assign a small rate with the correct // sign so that any logic depending on that // sign will work as expected. if (well_controls_get_current_type(ctrl) == SURFACE_RATE) { const double rate_target = well_controls_get_current_target(ctrl); const double * distr = well_controls_get_current_distr( ctrl ); for (int p = 0; p < np; ++p) { wellrates_[np*w + p] = rate_target * distr[p]; } } else { const double small_rate = 0.0; //1e-14; const double sign = (wells->type[w] == INJECTOR) ? 1.0 : -1.0; for (int p = 0; p < np; ++p) { wellrates_[np*w + p] = small_rate * sign; } } // 2. Bhp: initialize bhp to be target pressure if // bhp-controlled well, otherwise set to a // little above or below (depending on if // the well is an injector or producer) // pressure in first perforation cell. if (well_controls_get_current_type(ctrl) == BHP) { bhp_[w] = well_controls_get_current_target( ctrl ); } else { const int first_cell = wells->well_cells[wells->well_connpos[w]]; const double safety_factor = (wells->type[w] == INJECTOR) ? 1.01 : 0.99; bhp_[w] = safety_factor*cellPressures[first_cell]; } } // 3. Thp: assign thp equal to thp target/limit, if applicable, // otherwise keep it zero. Basically, the value should not be used // in the simulation at all. const int nwc = well_controls_get_num(ctrl); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(ctrl, ctrl_index) == THP) { thp_[w] = well_controls_iget_target(ctrl, ctrl_index); break; } } } // The perforation rates and perforation pressures are // not expected to be consistent with bhp_ and wellrates_ // after init(). perfrates_.resize(wells->well_connpos[nw], 0.0); perfpress_.resize(wells->well_connpos[nw], -1e100); } } /// One bhp pressure per well. std::vector& bhp() { return bhp_; } const std::vector& bhp() const { return bhp_; } /// One thp pressure per well. std::vector& thp() { return thp_; } const std::vector& thp() const { return thp_; } /// One temperature per well. std::vector& temperature() { return temperature_; } const std::vector& temperature() const { return temperature_; } /// One rate per well and phase. std::vector& wellRates() { return wellrates_; } const std::vector& wellRates() const { return wellrates_; } /// One rate per well connection. std::vector& perfRates() { return perfrates_; } const std::vector& perfRates() const { return perfrates_; } /// One pressure per well connection. std::vector& perfPress() { return perfpress_; } const std::vector& perfPress() const { return perfpress_; } size_t getRestartBhpOffset() const { return 0; } size_t getRestartPerfPressOffset() const { return bhp_.size(); } size_t getRestartPerfRatesOffset() const { return getRestartPerfPressOffset() + perfpress_.size(); } size_t getRestartTemperatureOffset() const { return getRestartPerfRatesOffset() + perfrates_.size(); } size_t getRestartWellRatesOffset() const { return getRestartTemperatureOffset() + temperature_.size(); } const WellMapType& wellMap() const { return wellMap_; } WellMapType& wellMap() { return wellMap_; } /// The number of wells present. int numWells() const { return bhp().size(); } /// The number of phases present. int numPhases() const { return wellRates().size() / numWells(); } virtual data::Wells report(const PhaseUsage& pu, const int* globalCellIdxMap) const { using rt = data::Rates::opt; data::Wells dw; for( const auto& itr : this->wellMap_ ) { const auto well_index = itr.second[ 0 ]; auto& well = dw[ itr.first ]; well.bhp = this->bhp().at( well_index ); well.thp = this->thp().at( well_index ); well.temperature = this->temperature().at( well_index ); const auto wellrate_index = well_index * pu.num_phases; const auto& wv = this->wellRates(); if( pu.phase_used[BlackoilPhases::Aqua] ) { well.rates.set( rt::wat, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ] ); } if( pu.phase_used[BlackoilPhases::Liquid] ) { well.rates.set( rt::oil, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ] ); } if( pu.phase_used[BlackoilPhases::Vapour] ) { well.rates.set( rt::gas, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ] ); } const int num_perf_well = this->wells_->well_connpos[ well_index + 1 ] - this->wells_->well_connpos[ well_index ]; well.connections.resize(num_perf_well); for( int i = 0; i < num_perf_well; ++i ) { const auto wi = this->wells_->well_connpos[ well_index ] + i; const auto active_index = this->wells_->well_cells[ wi ]; auto& connection = well.connections[ i ]; connection.index = globalCellIdxMap[active_index]; connection.pressure = this->perfPress()[ itr.second[1] + i ]; connection.reservoir_rate = this->perfRates()[ itr.second[1] + i ]; } assert(num_perf_well == int(well.connections.size())); } return dw; } virtual ~WellState() {} WellState() = default; WellState( const WellState& rhs ) : bhp_( rhs.bhp_ ), thp_( rhs.thp_ ), temperature_( rhs.temperature_ ), wellrates_( rhs.wellrates_ ), perfrates_( rhs.perfrates_ ), perfpress_( rhs.perfpress_ ), wellMap_( rhs.wellMap_ ), wells_( clone_wells( rhs.wells_.get() ) ) {} WellState& operator=( const WellState& rhs ) { this->bhp_ = rhs.bhp_; this->thp_ = rhs.thp_; this->temperature_ = rhs.temperature_; this->wellrates_ = rhs.wellrates_; this->perfrates_ = rhs.perfrates_; this->perfpress_ = rhs.perfpress_; this->wellMap_ = rhs.wellMap_; this->wells_.reset( clone_wells( rhs.wells_.get() ) ); return *this; } private: std::vector bhp_; std::vector thp_; std::vector temperature_; std::vector wellrates_; std::vector perfrates_; std::vector perfpress_; WellMapType wellMap_; protected: struct wdel { void operator()( Wells* w ) { destroy_wells( w ); } }; std::unique_ptr< Wells, wdel > wells_; }; } // namespace Opm #endif // OPM_WELLSTATE_HEADER_INCLUDED